

WT51F516 內建可編程 Flash 8 位元微控制器

中文產品規格書

Rev. 1.12

March, 2015

目 錄

1.	概亚.		3
2.	特性.		3
3.	系統力	方框圖	4
	3.1	系統時鐘方塊圖	5
4.	封裝引	引腳配置	6
	4.1	引腳功能	10
	4.2	引腳描述	
	4.3	端口結構	
5.	標準以	功能	15
	5.1	中央處理單元 (CPU)	15
	5.2	隨機數據存儲器 (RAM)	
	5.3	閃控程序存儲器 (Flash Memory)	
	5.4	記憶體映像 (Memory Mapping)	
	5.5	線上燒錄 (ISP)	
	5.6	計時器 (Timer)	
	5.7	復位 (Reset)	26
6.	增強。	分能	28
	6.1	外部特殊功能暫存器 (XFR)	28
	6.2	I/O 端口	32
	6.3	中斷	39
	6.4	通用異步收發器 (UART)	
	6.5	外部中斷要求 (IRQ)	
	6.6	脈衝寬度調製 (PWM)	
	6.7	電源管理	
	6.8	12 MHz RC 振盪器校正	
	6.9	看門狗定時器 (WDT)	
	6.10	, , , , , , , , , , , , , , , , , , , ,	
	6.11	實時時鐘模塊 (Real Time Clock)	
		紅外線接收器 (Infra Red)	
		I ² C 串行介面	
		增強型計時/計數器 (Enhanced Timer/Counter)	
		SPI 串行介面 (SPI)	
	6.16	2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	6.17	7 - 17 - 17	
	6.18		
	6.19	,	
	6 20	传真式 F²PR∩M	111

WT51F516

7.	電氣特性	115
	 7.1 極限參數	118 118 116 117
8.	應用電路	120
	8.1 +5.0V power Supply. 8.2 +3.3V power Supply. 8.3 振盪器線路. 8.4 RESET 線路.	12² 122
9.	產品命名規則	124
10.	訂購信息	124
11.	封裝尺寸	125
	11.1 48-Pin LQFP	126 127 128
12.	開發工具	131
13.	版本更改記錄	131

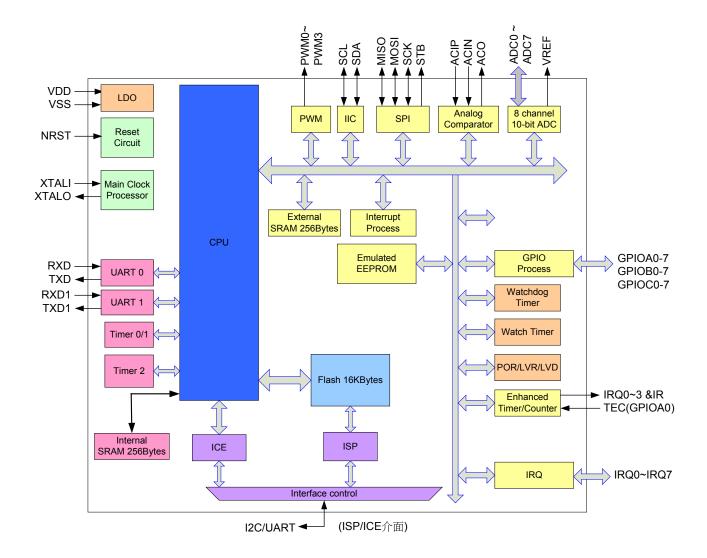
內建可編程 Flash 8 位元微控制器

1. 概述

WT51F516 是一顆高性能表現的 8 位元 MCU 產品,除了採用先進的 1T 8052 微處理器內核 RC 內振 12 MHz 外,這顆單晶片內含 16Kx8 的閃控程序存儲器、512x8 的隨機數據存儲器、8 通道 10 位元模/數轉換器(ADC)、1 組從機 I²C、1 組主/從機 SPI 串列介面、通用異步收發器(UART)、4 組 10 位元脈衝寬度調製(PWM)、消費性電子控制(CEC)、紅外線接收器(IR)、實時時鐘模塊(RTC)、比較器、溫度感應器、看門狗定時器(WDT)、省電模式(Power Down mode)。這顆 MCU 的閃控程序存儲器(Flash)也可提供給客戶模擬 E²PROM(4k)使用。內建 ISP/ICE 功能讓使用者有良好的開發環境縮短開發時間。WT51F516 寬廣的應用範圍包含:無線應用如 Zigbee/RF4CE、消費性電子產品如飛機模型遙控/馬達控制、家電產品、工業用產品、LED 燈光控制、醫療儀器、電腦週邊控制產品等...

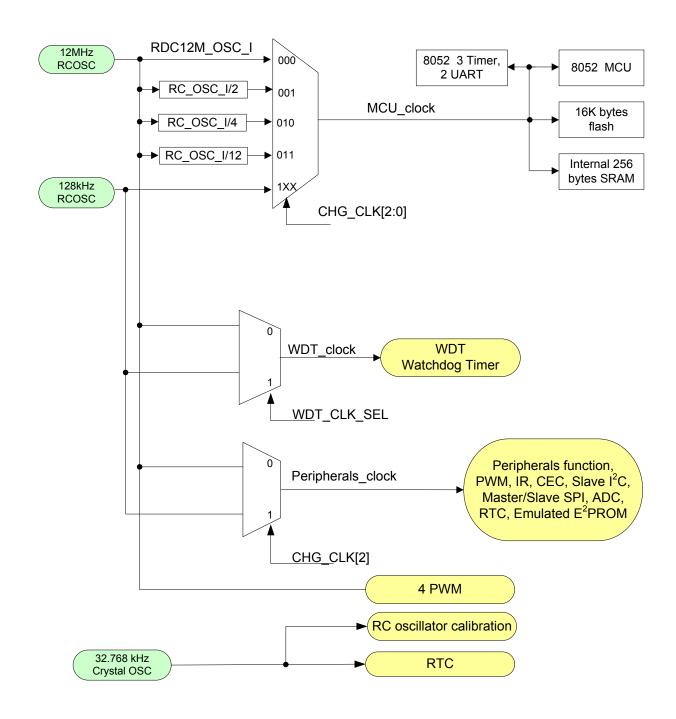
2. 特性

WT51F516 是一具備多種周邊功能之增強型 8052 微控制器,擁有以下特點:


- ▶ 1T 8052 核心,指令設定兼容 MCS-51
- ▶ 最快指令執行時間: 83.3ns @12 MHz
- > 512 位元組之記憶體 (256 位元組之標準 8052 內部數據記憶體 + 256 位元組外部記憶體)
- ▶ 16K 位元組閃控程序存儲器可供儲存程式
- ▶ 支援單晶振:
 - ◆ 主晶振: 內部 12 MHz RC 振盪器
- 雙 16 位元數據指針 (DPTR0 & DPTR1)
- ➤ 3組16位計時器 (Timer0、Timer1、Timer2)
- ▶ 1組看門狗定時器 (WDT)
- ▶ 1組16位增強型計時/計數器 (Enhanced Timer),內建捕捉功能
- ▶ 2組通用異步收發器 (UART0、UART1),可支援傳輸速率: 1200 bps ~ 230400 bps (工作於 12 MHz)
- ▶ 支援仿真式 E²PROM
- ▶ 1組 SPI (支援主/從機模式)
- ▶ 1組 I²C (支援從機模式)
- ▶ 實時時鐘模塊 (Real Time Clock)
- ➤ 紅外線接收器 (IR)
- ▶ 消費性電子控制 (CEC)
- ➤ 溫度感應器 (Temperature Sensor)
- ▶ 4組 10位元脈寬調制 (PWM0、PWM1、PWM2、PWM3)
- 8 通道的 10 位元模/數轉換器 (ADC0 ~ ADC8),內建精準參考電壓源 (Band-Gap)
- 1組比較器
- ▶ 支援 3 種省電模式: 睡眠模式 (Sleep mode)、省電模式 (Power-saving mode)與閒置模式 (Idle mode)
- ▶ 4個外部中斷腳位 (IRQ0 ~ IRQ3)
- ▶ 24 個可程式之雙向輸出/輸入接腳,其中 4 根擁有高電流驅動能力 (10mA)
- ▶ 可程式化低壓偵測 (LVD)
- ▶ 內建上電復位器 (POR) 與低壓復位 (LVR)
- ▶ 內建仿真 (ICE) 與線上燒錄 (ISP) 模式
- ➤ 工作電壓: 2V ~ 5.5V

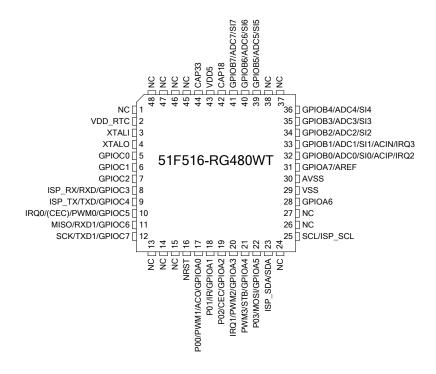
內建可編程 Flash 8 位元微控制器

- ▶ 工作溫度: -40℃ ~ +85℃
- ▶ 主力封裝: Dice, LQFP48, QFN32, SSOP20 及 SOP16


3. 系統方框圖

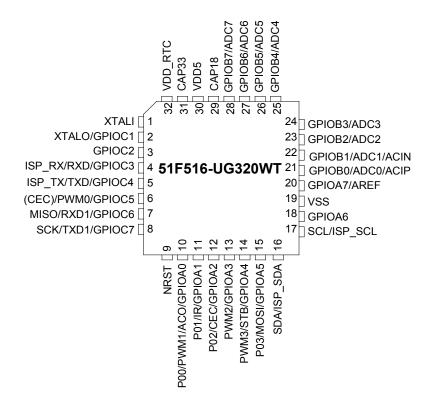
3.1 系統時鐘方塊圖

clock source

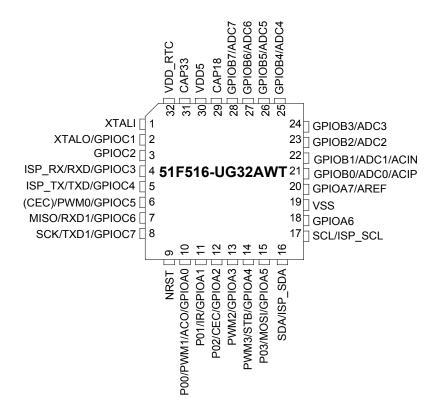

* 使用外部石英晶體振盪器,必須根據石英晶體振盪器頻率選擇對映的驅動能力,請參考 SYS 系統控制暫存器 (外部記憶體位址: 0x01 0x02)。

內建可編程 Flash 8 位元微控制器

4. 封裝引腳配置

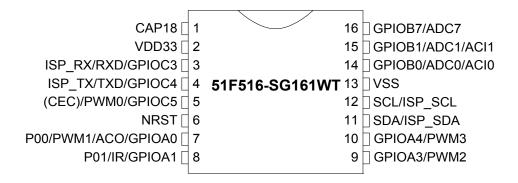

WT51F516-RG480WT 48-Pin LQFP

內建可編程 Flash 8 位元微控制器


WT51F516-UG320WT 32-Pin QFN

內建可編程 Flash 8 位元微控制器

WT51F516-UG32AWT 32-Pin QFN



內建可編程 Flash 8 位元微控制器

WT51F516-OG200WT 20-Pin SSOP

	Γ.		
CAP18	1		20 GPIOB7/ADC7
VDD33	2		19 GPIOB6/ADC6
ISP_RX/RXD/GPIOC3 [3		18 GPIOB1/ADC1/ACI1
ISP_TX/TXD/GPIOC4 [4		17 GPIOB0/ADC0/ACI0
(CEC)/PWM0/GPIOC5	5	51F516-OG200WT	16 🗆 VSS
MISO/RXD1/GPIOC6	6		15 SCL/ISP_SCL
SCK/TXD1/GPIOC7	7		14 SDA/ISP_SDA
NRST [8		13 GPIOA5/MOSI/P03
P00/PWM1/ACO/GPIOA0	9		12 GPIOA4/PWM3/STB
P01/IR/GPIOA1	10		11 GPIOA3/PWM2

WT51F516-SG161WT 16-Pin SOP

內建可編程 Flash 8 位元微控制器

4.1 引腳功能

4.1.1 48-Pin LQFP 之引腳介紹

		御編號			引腳名稱	}	主要功能		
RG480	UG320/32A	OG200	SG161	DIE	I/O		說明		
3	1			2	XTALI	I/O	32768 振盪器輸入腳		
4	2			3	XTALO	I/O	32768 振盪器輸出腳		
5				4	GPIOC0	I/O	GPIOC0:一般 I/O,可程式規畫爲大電流推拉式或開汲極		
6	2			5	GPIOC1	I/O	GPIOC1: 一般 I/O,可程式規畫為大電流推拉式或開 汲極		
7	3			6	GPIOC2	I/O	GPIOC2: 一般 I/O,可程式規畫為大電流推拉式或開 汲極		
8	4	3	3	7	GPIOC3/ RXD/ ISP_RXD	I/O	GPIOC3: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 RXD: 通用異步發射器接收腳 ISP_RXD: ISP RX 腳		
9	5	4	4	8	GPIOC4/ TXD/ISP_TXD	I/O	GPIOC4: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 TXD: 通用異步發射器傳送腳 ISP_TXD: ISP TX 腳		
10	0	5	5	9	GPIOC5/ PWM0/ CEC/ IRQ0	I/O	GPIOC5: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 PWM0: 脈衝寬度調製輸出腳 0 CEC: 消費性電子控制輸入腳 IRQ0: 外部中斷輸入腳 0		
11	7	6		10	GPIOC6/ RXD1/ MISO	I/O	GPIOC6: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 RXD1: 通用異步發射器接收腳 1 MISO: SPI 的 MISO 腳位		
12	8	7		11	GPIOC7/ TXD1/ SCK	I/O	GPIOC7: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 TXD1: 通用異步發射器接收腳 1 SCK: SPI 的 SCK 腳位		
16	9	8	6	12	NRES	I	硬體重置腳位(active low)		
17	10	9	7	13	GPIOA0/ PWM1/ ACO/ P00	I/O	GPIOA0: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 PWM1: 脈衝寬度調製輸出腳 1 ACO: 比較器輸出腳 P00: 對映至 8052 之 P0.0		
18	11	10	8	14	GPIOA1/ IR/ P01	I/O	GPIOA1: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 IR: 紅外線接收脚		

引腳編號					引腳名稱	}	主要功能		
RG480	UG320/32A	OG200	SG161	DIE	I/O		說明		
							P01: 對映至 8052 之 P0.1		
19	12			15	GPIOA2/ CEC/ P02	I/O	GPIOA2: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 CEC: 消費性電子控制輸入腳 P02: 對映至 8052 之 P0.2		
20	13	11	9	16	GPIOA3/ PWM2/ IRQ1	I/O	GPIOA3: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 PWM2: 脈衝寬度調製輸出腳 2 IRQ1: 外部中斷輸入腳 1		
21	14	12	10	17	GPIOA4/ STB/ PWM3	I/O	GPIOA4: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 STB: SPI 的 STB 腳位 PWM3: 脈衝寬度調製輸出腳 3		
22	15	13		18	GPIOA5/ MOSI/ P03	I/O	GPIOA5: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 MOSI: SPI 的 MOSI 腳位 P03: 對映至 8052 之 P0.3		
23	16	14	11	19	SDA/ISP_SDA	I/O	SDA: 從機 I ² C 資料腳位 ISP_SDA: ISP 資料腳位		
25	17	15	12	20	SCL/ISP_SCL	I/O	SCL: 從機 I ² C 時鐘腳位 ISP_SCL: ISP 時鐘腳位		
28	18			21	GPIOA6	I/O	GPIO A6: 一般 I/O,可程式規畫為大電流推拉式或開汲極		
29	19	16	13	22	VSS	PWR	Ground		
29	19	16	13	23	VSS	PWR	Ground		
29	19	16	13	24	VSS	PWR	Ground		
30	19	16	13	25	AVSS	PWR	Ground for ADC		
31	20			26	GPIOA7/ AREF	I/O	GPIOA7: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 AREF: ADC 參考電壓輸入腳		
32	21	17	14	27	GPIOB0/ ADC0/ ACIP/ IRQ2	I/O	GPIOB0: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC0: 模/數轉換器輸入腳 0 ACIP: 比較器輸入腳 (+) IRQ2: 外部中斷輸入腳 2		
33	22	18	15	28	GPIOB1/ ADC1/ ACIN/ IRQ3		GPIOB1: ADC1: 模/數轉換器輸入腳 1 ACIN: 比較器輸入腳 (-) IRQ3: 外部中斷輸入腳 3		
34	23			29	GPIOB2/ ADC2	I/O	GPIOB2: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC2: 模/數轉換器輸入腳 2		

內建可編程 Flash 8 位元微控制器

	引起	卻編號			引腳名稱	}	主要功能		
RG480	UG320/32A	OG200	SG161	DIE		I/O	說明		
35	24			30	GPIOB3/ ADC3	I/O	GPIOB3: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC3: 模/數轉換器輸入腳 3		
36	25			31	GPIOB4/ ADC4	I/O	GPIOB4: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC4: 模/數轉換器輸入腳 4		
				32	NC				
39	26			33	GPIOB5/ ADC5	I/O	GPIOB5: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC5: 模/數轉換器輸入腳 5		
40	27	19		34	GPIOB6/ ADC6	I/O	GPIOB6: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC6: 模/數轉換器輸入腳 6		
41	28	20	16	35	GPIOB7/ ADC7	I/O	GPIOB7: 一般 I/O,可程式規畫為大電流推拉式或開 汲極 ADC7: 模/數轉換器輸入腳 7		
				36	NC				
42	29	1	1	37	CAP18	PWR	1.8V LDO 濾波器		
42	29	1	1	38	CAP18				
43	30	2	2	39	VDD5	PWR	5V 電源		
44	31	2	2	40	CAP33		3.3V LDO 濾波器		
44	31	2	2	41	CAP33	PWR			
				42	NC				
2	32	2	2	1	VDD_RTC	PWR	RTC 3.3V 電源		

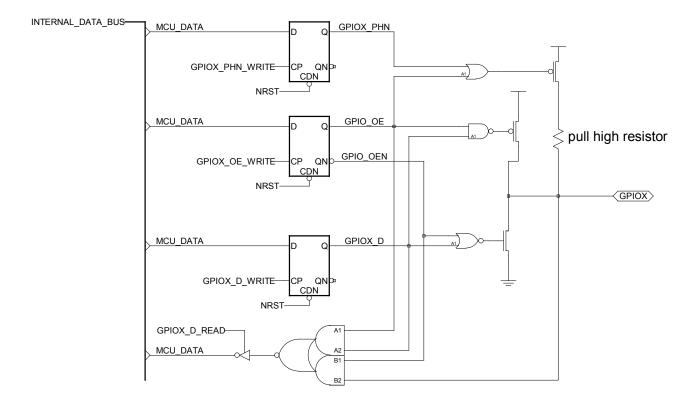
- (a) 所有 GPIO 都使用史密特輸入
- (b) 當使用從機 I²C 或 UART,外部線路需要 pull high 電阻
- (c) GPIOA7、GPIOB7~0、GPIOC1 and XTALI 最大輸入電壓是+3.6V,其它 GPIO 最大輸入電壓為+5.5V
- (d) CEC 腳位可透過 CEC_IO_SLT 暫存器(Index02H-bit4)選擇從 GPIOA2 或 GPIOC5 輸入

4.2 引腳描述

細部說明每支腳的功能:

引腳名稱	類型	說明						
PORT								
GPIOA0 ~ GPIOA7	I/O	8 位元雙向通用 I/O 端口						
GPIOB0 ~ GPIOB7	I/O	8 位元雙向通用 I/O 端口						
GPIOC0 ~ GPIOC7 I/O		8 位元雙向通用 I/O 端口						
IRQ								
IRQ0 ~ IRQ3	İ	4 根外部中斷要求輸入腳位						

WT51F516

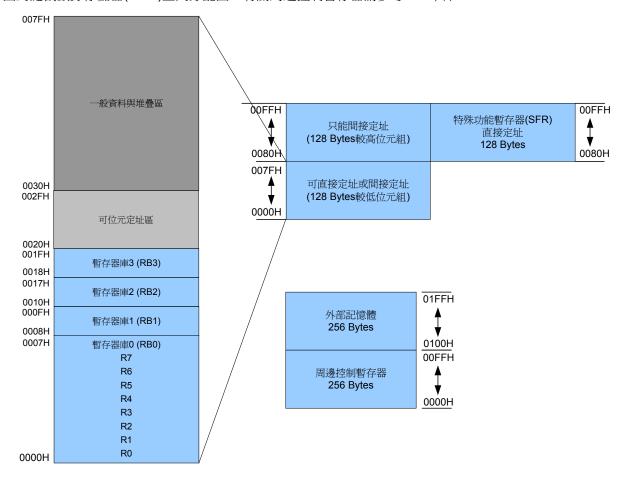

PWM0	引腳名稱	類型	說明
PWM1	PWM		
PWM2	PWM0	0	PWM 0 輸出
Description	PWM1	0	PWM 1 輸出
Name	PWM2	0	PWM 2 輸出
RXD	PWM3	0	PWM 3 輸出
TXD	UART		
RXD1	RXD	I	UART0 接收
TXD1	TXD	0	UART0 傳送
SCK	RXD1	ı	UART1 接收
SCK	TXD1	0	UART1 傳送
MOSI	SPI	•	
STB	SCK	I/O	SPI 介面之 clock
MISO	MOSI	I/O	SPI 數據腳位 MOSI (主控端輸出;被控端輸入)
ADC0 ~ ADC7	STB	0	SPI 致能
ADC0 ~ ADC7	MISO	I/O	SPI 數據腳位 MISO (主控端輸入;被控端輸出)
ACOMP	ADC		
ACIP	ADC0 ~ ADC7	ı	8 個模擬轉數位輸入腳位
ACIN	ACOMP		
ACO	ACIP	I	比較器之正極輸入腳位
PC	ACIN	ı	比較器之負極輸入腳位
SCL I/O I²C 介面之 clock SDA I/O I²C 介面之數據 VCC & VSS VDD P 電源 VSS P 接地 OSC XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE	ACO	0	比較器輸出腳位
SDA	I ² C		
VCC & VSS VDD P 電源 VSS P 接地 OSC XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE	SCL	I/O	I ² C 介面之 clock
VDD P 電源 VSS P 接地 OSC XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE ISP & ICE	SDA	I/O	I ² C 介面之數據
VSS P 接地 OSC XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE ISP & ICE	VCC & VSS		
OSC XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE ISP & ICE	VDD	Р	電源
XTALO O 主振盪器輸出 XTALI I 主振盪器輸入 RESET NRST I 將 CPU 復位 ISP & ICE ISP & ICE	VSS	Р	接地
XTALI	osc		
RESET NRST I 將 CPU 復位 ISP & ICE	XTALO	0	主振盪器輸出
NRST I 將 CPU 復位 ISP & ICE	XTALI	I	主振盪器輸入
ISP & ICE	RESET		
	NRST	I	將 CPU 復位
I ² C I/O ISP & ICE 介面	ISP & ICE		
	I ² C	I/O	ISP & ICE 介面

內建可編程 Flash 8 位元微控制器

4.3 端口結構

I/O 結構

5. 標準功能


5.1 中央處理單元 (CPU)

內建一個八位元 1T 之 8052 相容之 CPU,具有 16 位元位址定址與 8 位元數據存取功能,1T 8052 比傳統 3T 8052 指令週期快 3 倍,比 12T 8052 指令週期快 12 倍,它的所有功能以及特殊功能暫存器(SFR)的詳細定義將在以下章節說明。

5.2 隨機數據存儲器 (RAM)

WT51F516 具有 256+256 Bytes 的 SRAM, 其中 256 Bytes 和通用的 8052 內部記憶體結構一樣, 外擴 256 Bytes 的 SRAM, 可以透過 MOVX 指令進行讀取。

下圖爲隨機數據存儲器(RAM)空間分配圖,有關周邊控制暫存器請參考 6.1 章節。

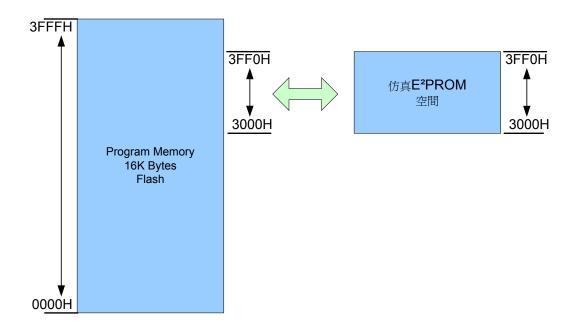
內部之一般數據記憶體(SRAM)包含:

128 位元組之內部 SRAM,位址於 0x0000H ~ 0x007FH (可直接或間接定址)

128 位元組之內部 SRAM,位址於 0x0080H~0x00FFH (間接定址)

內建可編程 Flash 8 位元微控制器

256 位元組之外部 SRAM, 位址從 0x0100H~0x01FFH (使用 MOVX 進行存取)


主要用途爲擔任程式中暫時存放數據的地方,所以也稱爲數據記憶體,WT51F516的數據記憶體包含下面幾部分:

- (1) 低位 128 個位元組之內部 SRAM,位址從 0000H~007FH,可直接或間接定址方式存取,其中包含:
 - ◆ 一般用途暫存器,位址從 0000H ~ 001FH, 共 32 個位元組, 其中分成 4 個暫存器庫, 每個暫存器庫包含 8 個一般用途暫存器,即 R0 ~ R7,可利用 PSW 程式狀態字組暫存器的選擇位元 RS1 與 RS0 來切換此 4 個暫存器庫
 - ◆ 可位元定址區,位址從 20H ~ 2FH,共 16 個位元組,此 16 個位元組即包含 128 個位元(bit),且每一個位元皆可單獨使用位元定址法來直接定址存取
 - ◆ 一般數據儲存區,位址從 0030H ~ 007FH, 共 80 個位元組可自由使用(包括堆疊區共用)
- (2) 高位 128 個位元組之內部 SRAM, 位址從 0080H ~ 00FFH, 採用間接定址方式存取, 亦即需利用 R0 或 R1 來進行存取(*)
- (3) 特殊功能暫存器(SFR),位址從 0080H~00FFH,採用直接定址方式存取(*)
- (4) 256 個位元組之外部 SRAM,位址從 0100H~01FFH,透過指令 MOVX 來間接存取
- (*) 暫存器(SFR)雖然與高位 128 個位元組之內部 SRAM 同樣擁有位址 0080H ~ 00FFH,但實際上為不同的兩塊記憶體區塊,MCU 會藉由兩個不同的存取方式來自動判斷所要存取的區塊來進行切換

5.3 閃控程序存儲器 (Flash Memory)

WT51F516 有 16K 的嵌入式 flash,可做爲通用的程式存儲或仿真式 E^2 PROM (0x3000H ~ 0x3FF0H) 用途,特色如下:

- ◆ FLASH 記憶體總共爲 16K 位元組
- ◆ 工作電壓即 2V ~ 5.5V
- ◆ 支援線上燒錄 (ISP)
- ◆ 數據保存 10 年以上
- ◆ 具仿真式 E²PROM 之功能

內建可編程 Flash 8 位元微控制器

5.4 記憶體映像 (Memory Mapping)

WT51F516 內置 128 位元組的直接定址暫存器, WT51F516 的標準 SFR 有以下幾種:

- ▶ CPU 內核暫存器: ACC、B、PSW、SP、DPL0、DPH0、DPL1、DPH1、DPS
- ▶ 中斷系統暫存器: IP、IE、XICON
- ► I/O 埠暫存器: P0
- ▶ 計時器暫存器: TCON、TMOD、TL0、TH0、TL1、TH1、T2CON、T2MOD、TL2、TH2、RCAP2L、

RCAP2H

- ▶ UARTO 暫存器: SCONO、SBUFO、SBRGOH、SBRGOL、PCON
- ▶ UART1 暫存器: SCON1、SBUF1、SBRG1H、SBRG1L

特殊功能暫存器分布圖如下所示:

	可位元 定址		不可位元定址								
F8H											
F0H	В										
E8H											
E0H	ACC										
D8H	SCON1	SBUF1	SBRG1H	SBRG1L							
D0H	PSW										
C8H	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2					
C0H	XICON										
B8H	IP										
B0H											
A8H	ΙE										
A0H											
98H	SCON0	SBUF0	SBRG0H	SBRG0L							
90H											
88H	TCON	TMOD	TL0	TL1	TH0	TH1					
80H	P0	SP	DPL0	DPH0	DPL1	DPH1	DPS	PCON			

下表爲特殊功能暫存器(SFR)的內容說明:

1 20mg/1/1/6/2/1/0 1 m/ (1/4/1 / 1 m/ (2) -								
暫存器名稱	位址	復位値	說明					
P0	80H	FFH	Port 0					
SP	81H	07H	Stack Pointer					
DPL	82H	00H	Data Pointer 0 low byte					
DPH	83H	00H	Data Pointer 0 high byte					
DPL1	84H	00H	Data Pointer 1 low byte					
DPH1	85H	00H	Data Pointer 1 high byte					
DPS	86H	00H	Data Pointer select					
PCON	87H	40H	Power Control Register					

WT51F516

內建可編程 Flash 8 位元微控制器

暫存器名稱	位址	復位値	說明
TCON	88H	00H	Timer 0/1 Counter Control
TMOD	89H	00H	Timer 0/1 Mode Control
TL0	8AH	00H	Timer 0, low byte
TL1	8BH	00H	Timer 1, low byte
TH0	8CH	00H	Timer 0, high byte
TH1	8DH	00H	Timer 1, high byte
SCON0	98H	00H	Serial Port 0, Control Register
SBUF0	99H	00H	Serial Port 0, Data Buffer
SBRG0H	9AH	00H	Serial Baud rate Generator, high byte
SBRG0L	9BH	00H	Serial Baud rate Generator, low byte
IE	A8H	00H	Interrupt Enable Register
IP	B8H	00H	Interrupt Priority Register 1
XICON	C0H	00H	Interrupt Enable Register (INT2/INT3)
T2CON	C8H	00H	Timer 2 Control
T2MOD	C9H	00H	Timer 2 Mode Control
RCAP2L	CAH	00H	Compare/Reload/Capture Register, low byte
RCAP2H	CBH	00H	Compare/Reload/Capture Register, high byte
TL2	CCH	00H	Timer 2, low byte
TH2	CDH	00H	Timer 2, high byte
PSW	D0H	00H	Program Status Word
SCON1	D8H	00H	Serial Port 1, Control Register
SBUF1	D9H	00H	Serial Port 1, Data Buffer
SBRG1H	DAH	00H	Serial Baud rate Generator 1, high byte
SBRG1L	DBH	00H	Serial Baud rate Generator 1, low byte
ACC	E0H	00H	Accumulator
В	F0H	00H	B Register

註: 特殊功能暫存器的重置值,請參考 5.7 "復位"章節。

WT51F516 CPU 相關 SFR 介紹如下:

7	6	5	4	3	2	1	0
B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0

B 暫存器主要用來進行乘法與除法的運算,在乘法運算中用來存放乘數與運算結果的高位元組;在除法運算中用來存放除數以及運算結果之餘數。亦可當作一般暫存器來使用。

ACC: Address: E0H 復位值: 0x00

7	6	5	4	3	2	1	0
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0

累加器,大部分之運算都需透過累加器。

WT51F516

內建可編程 Flash 8 位元微控制器

7	6	5	4	3	2	1	0
				P0.3	P0.2	P0.1	P0.0

4

RS1

3

RS0

2

 OV

輸出/輸入端口 P0 的數據設定。

CY

PSW (Program Status Word): Address: D0H

F0

121江10.000					
1	0				
-1	PARITY				

积式 狀能 字 元 ,	今有程式渾作時之相關訊息	0

AC

位元編號	位符號	說明
7	CY	進位旗標(Carry Flag),用來表示算術指令運算後的結果,其數據的第7
		個位元是否有進位或借位。
		加法運算時(ADD)的結果:有進位 C = 1,沒有進位 C = 0。
		减法運算時(SUB)的結果:有進位 C = 1,沒有進位 C = 0。
6	AC	半進位旗標(Aux Carry Flag),用來表示算術後數據的第3個位元是否有
		向第4個位元進位或借位。
		加法運算時(ADD)的結果:有進位 C = 1,沒有進位 C = 0。
		减法運算時(SUB)的結果:有借位 C = 1,沒有借位 C = 0。
5	F0	一般用途旗標,可作爲一般的讀/寫位元。
4	RS1	暫存器庫選擇(參考暫存器庫選擇表)
3	RS0	
2	OV	溢位旗標(Over Flag),表示程式經算術或邏輯運算後的結果是否有溢
		位,若是 OV = 1,若不是 OV = 0。
1	F1	一般用途旗標,可作爲一般的讀/寫位元。
0	Р	同位旗標,累加器(ACC)的內容若有奇數個 1 則此旗標爲 1,否則爲 0。

暫存器庫選擇表

暫存器庫 位址		RS1	RS0
0	00H-07H	0	0
1	08H-0FH	0	1
2	10H-17H	1	0
3	18H-1FH	1	1

SP (Stack Point) Address: 81H

復位を	·请∙	0x07	
125/11/.1	ı¤.	UAUI	

7	6	5	4	3	2	1	0
SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0

堆疊指標,指向最後 PUSH 進入之堆疊位址。當使用 PUSH 操作時 SP 會自動先+1 再將值存入堆疊器內。

DPL0 (DPTR0, low byte of the 16-bit data pointer) Address: 82H

復位	盾:	0x00
ועבו צעו	ш.	UAUU

7	6	5	4	3	2	1	0
DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0

爲 DPTR0(數據指標)之低位元組,搭配 DPH0 進行存取數據時的位址指標使用。

WT51F516

內建可編程 Flash 8 位元微控制器

DPH0 (DPTR0, high byte of the 16-bit data pointer) Address: 83H

<i>₩</i> ₩ ₩		^ /	•
復位化	iĦ.	IIVI	111
1257 177		$\boldsymbol{\sigma}$,,

7	6	5	4	3	2	1	0
DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0

為 DPTRO(數據指標)之高位元組,搭配 DPLO 進行存取數據時的位址指標使用。

DPL1 (DPTR1, low byte of the 16-bit data pointer 1) Address: 84H

復位值: 0x00

7	6	5	4	3	2	1	0
DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0

為第二組數據指標(DPTR1)之低位元組,搭配 DPH1 進行存取數據時的位址指標使用。

DPH1 (DPTR1, high byte of the 16-bit data pointer 1) Address: 85H

復位值: 0x00

7	6	5	4	3	2	1	0
DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0

為第二組數據指標(DPTR1)之高位元組,搭配 DPL1 進行存取數據時的位址指標使用。

DPS (Data point select) Address: 86H

復位値: 0x00

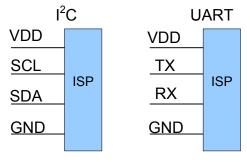
7	6	5	4	3	2	1	0
							DPS

數據指標(DPTR)選擇,當 DPS = 0,使用 DPTR0(DPH0, DPL0)

當 DPS = 1,使用 DPTR1(DPH1, DPL1)

註: 其它的特殊功能暫存器將在後面的章節介紹。

5.5 線上燒錄 (ISP)


線上燒錄 (In System Program) 即用戶可以直接在系統目標板進行程式燒錄。

ISP 界面可以採用:

4 線式: VDD、GND (VSS)、SCL、SDA

4 線式: VDD、GND (VSS)、TX、RX

下圖爲 ISP 界面接腳示意圖:

註: 請參考 WT51F516 ISP/ICE 使用說明手冊。

內建可編程 Flash 8 位元微控制器

5.6 計時器 (Timer)

WT51F516 有三個 16 Bit 的計時器 (Timer0 ~ 2),可以被設定爲計時或計數功能。

5.6.1 計時器 0 與計時器 1 (Timer 0/1)

WT51F516 內部計時器 0 與計時器 1 可利用特殊暫存器 TMOD 中的 M11、M10 或 M01、M00 來選擇 4 種不同的工作模式,說明如下:

TMOD (8052 Timer0/1 Mode Control Register) Address: 89H

7	6	5	4	3	2	1	0
GATE1	C1/T1	M11	M10	GATE0	C0/T0	M01	M00

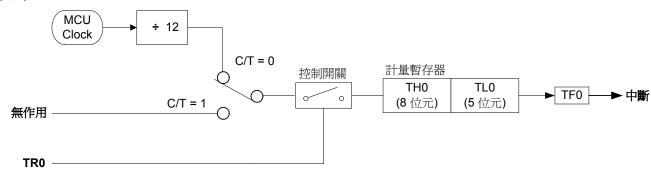
位元編號	位符號	說明
7	GATE1	GATE1 = 1,無作用
		GATE1 = 0,設定為內部啟動,只要 TR1 = 1 即可啟用 Timer1
6	C1/T1	計時切換開關
		C1/T1 = 1,無作用
		C1/T1 = 0,設定為內部計時器,計數內部時鐘源除 12 的信號
5-4	M11-M10	計時器 1 的模式選擇位元
		00: 模式 0 爲 13 位元之計時器
		01: 模式 1 爲 16 位元之計時器
		10: 模式 2 爲 8 位元自動載入計時器
		11: 模式 3 計時器 1,此時停止計時
3	GATE0	GATE0 = 1,無作用
		GATE0 = 0,設定為內部啟動,只要 TR0=1 即可啟用 Timer0
2	C0/T0	計時切換開關
		C0/T0 = 1,無作用
		C0/T0 = 0,設定為內部計時器,計數內部時鐘源除 12 的信號
1-0	M01-M00	計時器 0 的模式選擇位元
		00: 模式 0 爲 13 位元之計時器
		01: 模式 1 爲 16 位元之計時器
		10: 模式 2 爲 8 位元自動載入計時器
		11: 模式 3 為 8 位元之計時器 (TL0 由 TR0 啟動, TH0 由 TR1 啟動)

註: 當使用計時器 0 或計時器 1, Cx/Tx 必須為 0, 計時器才能正常工作。

TCON (8052 Timer 0/1 Control Register) Address: 88H

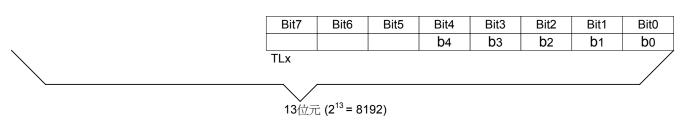
7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

位元編號	位符號	說明
7	TF1	計時器 1 之溢位旗標。當計時或計數產生溢位時,會自動令 TF1 = 1。
		當 CPU 跳至計時器 1 的中斷向量執行中斷副程式時,會自動令 TF1 = 0。
6	TR1	計時器 1 之致能位元。當 TR1 = 1 時,計時器 1 工作;當 TR1 = 0 時,計時器 1 停止工作。
5	TF0	計時器 0 之溢位旗標。當計時或計數產生溢位時,會自動令 TF0 = 1。



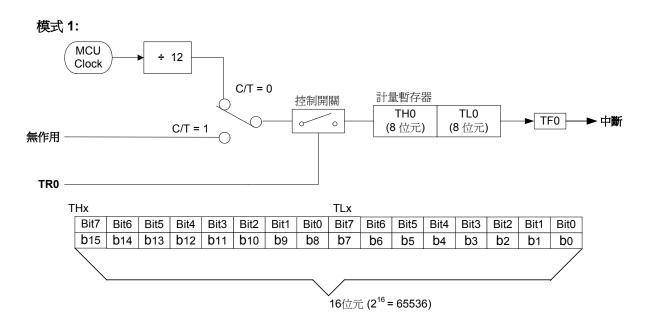
內建可編程 Flash 8 位元微控制器

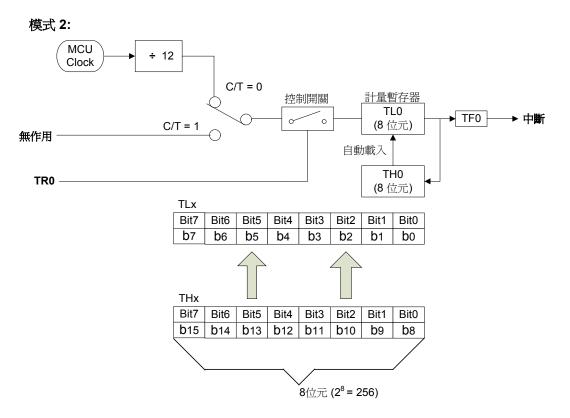
位元編號	位符號	說明
		當 CPU 跳至計時器 0 的中斷向量執行中斷副程式時,會自動令
		TF0 = 0 ∘
4	TR0	計時器 0 之致能位元。當 TR0 = 1 時,計時器 0 工作;
		當 TR0 = 0 時,計時器 0 停止工作。
3	IE1	外部中斷 INT1 顯示旗標,INT1 中斷成立時,IE1 = 1。中斷執行完畢
		時,IE1 = 0。
2	IT1	外部中斷 INT1 中斷信號選擇,IT1 = 1 為負緣觸發輸入; IT1 = 0 為
		低準位輸入。
1	IE0	外部中斷 INTO 顯示旗標,INTO 中斷成立時,IEO = 1。中斷執行
		完畢時,IE0 = 0。
0	IT0	外部中斷 INT0 中斷信號選擇,IT0 = 1 為負緣觸發輸入; IT0 = 0 為
		低準位輸入。


註: 計時器 1 之傳輸速率產生器,請參考 6.4 章節。

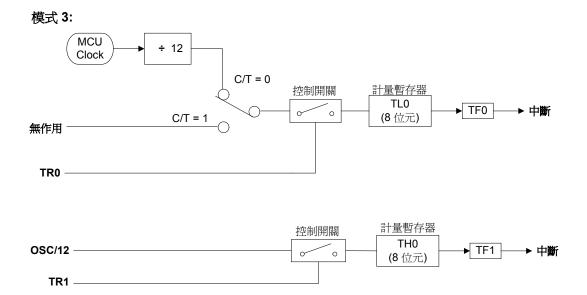
模式 0:

THx


Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
b12	b11	b10	b9	b8	b7	b6	b5


當計時器 0 及計時器 1 工作於模式 0 時,兩者的動作相同,此時特殊功能暫存器 THx 與 TLx 組成 13 位元之向上計時器,當計數至 13 個位元全為 1,此時再加 1 後會令這 13 個位元全變為 0,同時計時之溢位旗標 TFx=1 (TFx 位於特殊暫存器 TCON 中),此時若有致能計時器中斷則會產生中斷。

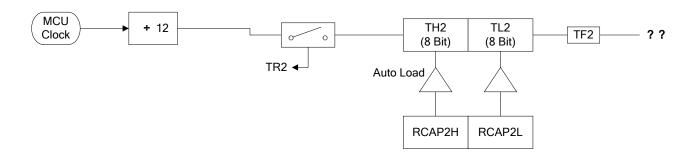
內建可編程 Flash 8 位元微控制器


當計時器 0 及計時器 1 工作於模式 1 時,動作與模式 0 幾乎一模一樣,除了此時的 THx 與 TLx 是組成 16 位元之向上計時器。

當計時器 0 及計時器 1 工作於模式 2 時,兩者的動作相同,提供兩個 8 位元可自動載入的計時器 (Timer 0 及 Timer 1),其計時或計數的量放置在 1 工工 暫存器裡,當 1 工工 發生溢位時,除了會令 1 工工 不分,並且會自動將 1 工工 的值再載入 1 工工 中,以繼續計數下去。

內建可編程 Flash 8 位元微控制器

當計時計數器 0 及計時計數器 1 工作於模式 3 時,兩者的動作完全不同,分別如下: 計時器 0 工作於模式 3 時,TL0 是一個 8 位元之計時器,TH0 則爲 TR1 控制之 8 元計數器,此時要注意的是 TH0 借用計時器 1 的溢位旗標,故其相對應的中斷副程式位址是 TH1 001BH。 計時器 TH1 工作於模式 TH1 3 時,此時停止計時。



內建可編程 Flash 8 位元微控制器

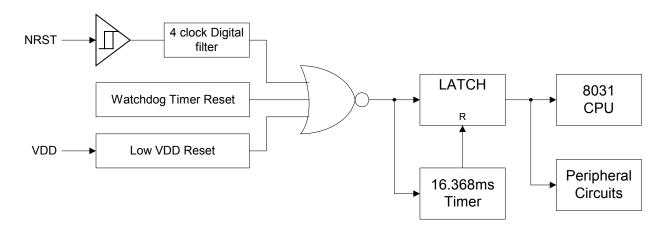
5.6.2 計時器 2 (Timer 2)

計時器 2 之 16 位元自動載入模式

自動載入模式 (Auto-Reload Mode)是自動將 RCAP2H 及 RCAP2L 暫存器的資料(16 位元), 載入 TH2 與 TL2 暫存器, 其架構如圖所示:

T2CON (8052 Timer 2 Control Register) Address: C8H

7	6	5	4	3	2	1	0
TF2	-	-	-	-	TR2	-	-


位元編號	位符號	說明	
7	TF2	本位元爲 Timer 2 溢位旗標,當 Timer 2 中斷時,CPU 會將 TF2 位元	
		設定爲 1; 結束 Timer 2 中斷時, CPU 並不會將 TF2 恢復, 必須在程式中,	
		以「TF2 = 0;」指令將它恢復為 0。	
6-3	保留	-	
2	TR2	本位元為 Timer 2 的啟動位元,當本位元為 1 時,即可啟動 Timer 2。	
		若本位元為 0 時,則停用 Timer 2。	
1-0	保留	-	

啓動 Timer 2 後,Timer 2 即進行計數工作,即啟動自動載入信號,將當時 RCAP2H 暫存器的內容,將被複製到 TH2 暫存器、RCAP2L 暫存器的內容,將被複製到 TL2 暫存器。Timer 2 的中斷並不影響計數的動作,待 Timer 2 計數溢位時,則 TF2 位元設定為 1,並產生 Timer 2 中斷。

內建可編程 Flash 8 位元微控制器

5.7 復位 (Reset)

WT51F516 具有 5 種復位機制,包括上電復位(POR)、低壓復位(LVR)、外部 NRST 腳位復位旗標、看門狗復位、ISP/ICE 命令復位。當 WT51F516 發生任何一種復位,則幾乎所有的暫存器皆會回復至復位值。

上電復位 (POR)

當 VDD 電壓低於復位電壓(參考 DC 電氣特性章節),則發生上電復位。

低壓復位 (LVR)

當 VDD 電壓低於最低允許工作電壓點時發生復位。

外部 NRST 腳位復位

當外部復位腳位(NRST)電壓低於此腳位之 VIL(參考 DC 電氣特性章節)時發生復位。

看門狗復位 (Watchdog Timer Reset)

當看門狗定時器設定之時間到達後則發生復位。

ISP/ICE 命令復位

當傳送復位命令,則發生 ISP/ICE 復位。

復位狀態

當發生上述狀況,所有的特殊暫存器皆會回到初始預設值,其中 SFR 的部分如下表,而 XFR 的部分請參考下一章節。

特殊功能暫存器復位後的預設值,如下所示:

SFR	預設値	SFR	預設値
P0	11111111b	P2	11111111b
SP	00000111b	ΙE	0000000b
DPL0 00000000b		P3	11111111b

WT51F516

SFR	預設値	SFR	預設値
DPH0	0000000b	IP	xx000000b
DPL1	0000000b	T2CON	0000000b
DPH1	0000000b	T2MOD	xxxxxx00b
DPS	0000000b	RCAP2L	0000000b
PCON	0000000b	RCAP2H	0000000b
TCON	0000000b	TL2	0000000b
TMOD	0000000b	TH2	0000000b
TL0	0000000b	PSW	0000000b
TL1	0000000b	SCON1	0000000b
TH0	0000000b	SBUF1	0000000b
TH1	0000000b	SBRG1H	0000000b
P1	11111111b	SBRG1L	0000000b
SCON0	0000000b	ACC	0000000b
SBUF0	0000000b	В	0000000b
SBRG0H	0000000b	XICON	0000000b
SBRG0L	0000000b		

6. 增強功能

6.1 外部特殊功能暫存器 (XFR)

外部特殊功能暫存器(XFR)位址為 0x00~0xFF,必須使用指令 MOVX 來進行資料存取。

以下是外部特殊暫存器功能對照表:

外部記憶體位址	說明
0000H ~ 000FH	系統暫存器,低壓偵測及看門狗復位暫存器
0010H ~ 001BH	通用 I/O 端口暫存器
001CH ~ 001FH	複合功能暫存器
0020H ~ 0029H	喚醒來源設定暫存器
002AH ~ 002CH	內部振盪調整暫存器
0030H ~ 0035H	中斷致能暫存器
003AH ~ 003BH	外部中斷要求暫存器 (IRQ)
0050H ~ 005DH	脈衝寬度調製暫存器 (PWM)
0060H ~ 0063H	紅外線接收器暫存器 (IR)
0070H ~ 0076H	消費性電子控制暫存器 (CEC)
0080H ~ 0083H	增強型計時/計數器暫存器
00A0H ~ 00ABH	I ² C 串行介面暫存器
0038H.00B0H ~ 00BFH	實時時鐘模塊暫存器 (RTC)
00C0H ~ 00CBH	SPI 串行介面暫存器
00D0H ~ 00D7H	10 位元模/數轉換器暫存器
00D9H	比較器暫存器
00E0H ~ 00E8H	仿真式 E ² PROM 暫存器

當發生 5.7 章節所提到的復位狀況,外部特殊功能暫存器復位後的預設値,如下表所示: 外部特殊功能暫存器復位預設値對映表

暫存器名稱	位址	復位預設値 (Hex)	參照章節
保留	-	-	-
SYS 系統控制暫存器 0	0x01	82	6.7
SYS 系統控制暫存器 1	0x02	20	6.7
SYS 系統控制暫存器 2	0x03	00	6.7
SYS 系統控制暫存器 3	0x04	00	6.7
看門狗定時控制暫存器 0	0x08	00	6.9
看門狗定時控制暫存器 1	0x09	00	6.9
看門狗定時控制暫存器 2	0x0A	00	6.9
低壓偵測控制暫存器	0x0B	80	6.18
SYS 系統控制暫存器 4	0x0F	20	6.7
通用 I/O 端口 A 輸出致能控制暫存器	0x10	00	6.2
通用 I/O 端口 B 輸出致能控制暫存器	0x11	00	6.2
通用 I/O 端口 C 輸出致能控制暫存器	0x12	00	6.2
通用 I/O 端口 A 數據暫存器	0x13	00	6.2
通用 I/O 端口 B 數據暫存器	0x14	00	6.2
通用 I/O 端口 C 數據暫存器	0x15	00	6.2

暫存器名稱	位址	復位預設値 (Hex)	參照章節
通用 I/O 端口 A 致能內部上拉電阻暫存器	0x16	FF	6.2
通用 I/O 端口 B 致能內部上拉電阻暫存器	0x17	FF	6.2
通用 I/O 端口 C 致能內部上拉電阻暫存器	0x18	FF	6.2
通用 I/O 端口 A 輸出型態控制暫存器	0x19	FF	6.2
通用 I/O 端口 B 輸出型態控制暫存器	0x1A	FF	6.2
通用 I/O 端口 C 輸出型態控制暫存器	0x1B	FF	6.2
複合功能設定暫存器 1	0x1C	00	6.3
複合功能設定暫存器 2	0x1D	00	6.3
複合功能設定暫存器 3	0x1F	00	6.3
SYS 喚醒控制暫存器 0	0x20	00	6.7
SYS 喚醒控制暫存器 1	0x21	00	6.7
SYS 喚醒控制暫存器 2	0x22	00	6.7
SYS 喚醒控制暫存器 3	0x23	00	6.7
SYS 喚醒觸發暫存器 0	0x24	00	6.7
SYS 喚醒觸發暫存器 1	0x25	00	6.7
SYS 喚醒觸發暫存器 2	0x26	00	6.7
SYS 喚醒觸發暫存器 3	0x27	00	6.7
SYS 觸發清除控制暫存器	0x28	00	6.7
SYS 增強型計時/計數器喚醒控制暫存器	0x29	00	6.7
內部振盪計數數據高位元組暫存器	0x2A	00	6.8
內部振盪計數數據低位元組暫存器	0x2B	00	6.8
內部振盪校正控制暫存器	0x2C	40	6.8
8052 外部中斷 0 控制暫存器 0	0x30	00	6.3
8052 外部中斷 0 控制暫存器 1	0x31	00	6.3
8052 外部中斷 1 控制暫存器 0	0x32	00	6.3
8052 外部中斷 1 控制暫存器 1	0x33	00	6.3
8052 外部中斷旗標暫存器 0	0x34	00	6.3
8052 外部中斷旗標暫存器 1	0x35	00	6.3
RTC 控制暫存器	0x38	00	6.11
外部中斷要求(IRQ)控制高位元組暫存器	0x3A	00	6.5
外部中斷要求(IRQ)控制低位元組暫存器	0x3B	00	6.5
PWM 控制暫存器 0	0x50	00	6.6
PWM 控制暫存器 1	0x51	00	6.6
PWM 時鐘源控制暫存器 0	0x52	00	6.6
PWM 時鐘源控制暫存器 1	0x53	00	6.6
PWM 時鐘源控制暫存器 2	0x54	00	6.6
PWM 時鐘源控制暫存器 3	0x55	00	6.6
PWM 佔空比低位元組控制暫存器 0	0x56	80	6.6
PWM 佔空比高位元組控制暫存器 0	0x57	02	6.6
PWM 佔空比低位元組控制暫存器 1	0x58	80	6.6
PWM 佔空比高位元組控制暫存器 1	0x59	02	6.6
PWM 佔空比低位元組控制暫存器 2	0x5A	80	6.6
PWM 佔空比高位元組控制暫存器 2	0x5B	02	6.6

Weltrend 偉詮電子

暫存器名稱	位址	復位預設値 (Hex)	參照章節
PWM 佔空比低位元組控制暫存器 3	0x5C	80	6.6
PWM 佔空比高位元組控制暫存器 3	0x5D	02	6.6
紅外線控制暫存器	0x60	00	6.12
紅外線中斷暫存器	0x61	04	6.12
紅外線計數暫存器	0x62	00	6.12
紅外線數位濾波暫存器	0x63	00	6.12
CEC 控制暫存器	0x70	00	6.10
CEC 啓動裝置暫存器	0x71	10	6.10
CEC 從者端暫存器	0x72	00	6.10
CEC 中斷控制暫存器	0x73	00	6.10
CEC 清除中斷暫存器	0x74	00	6.10
CEC 傳送緩衝暫存器	0x75	FF	6.10
CEC 接收緩衝暫存器	0x76	00	6.10
增強型計時/計數器控制暫存器 1	0x80	00	6.14
增強型計時/計數器控制暫存器 2	0x81	00	6.14
增強型計時/計數器數據緩衝高位元組暫存器	0x82	00	6.14
增強型計時/計數器數據緩衝低位元組暫存器	0x83	00	6.14
從機 I ² C 控制暫存器	0xA0	00	6.13
從機 I ² C 中斷暫存器	0xA1	00	6.13
從機 I ² C 旗標清除暫存器	0xA2	00	6.13
從機 I ² C 旗標暫存器	0xA3	00	6.13
從機 I ² C 位址暫存器	0xA4	00	6.13
從機 I ² C 索引清除控制暫存器	0xA8	00	6.13
從機 I ² C TX FIFO 控制暫存器	0xA9	80	6.13
從機 I ² C RX FIFO 控制暫存器	0xAA	00	6.13
從機 I ² C 傳送接收緩衝資料暫存器	0xAB	FF	6.13
RTC 秒數控制暫存器	0xB0	00	6.11
RTC 分鐘數控制暫存器	0xB1	00	6.11
RTC 時數控制暫存器	0xB2	00	6.11
RTC 日期控制暫存器	0xB3	01	6.11
RTC 星期控制暫存器	0xB4	00	6.11
RTC 月份控制暫存器	0xB5	01	6.11
RTC 年控制暫存器	0xB6	00	6.11
RTC 備份控制暫存器 1	0xB8	00	6.11
RTC 備份控制暫存器 2	0xB9	00	6.11
RTC 備份控制暫存器 3	0xBA	00	6.11
RTC 備份控制暫存器 4	0xBB	00	6.11
RTC 控制暫存器 1	0xBC	00	6.11
RTC 控制暫存器 2	0xBD	00	6.11
RTC 控制暫存器 3	0xBE	81	6.11
RTC 控制暫存器 4	0xBF	62	6.11
SPI 控制暫存器 1	0xC0	00	6.15
SPI 中斷控制暫存器	0xC1	00	6.15
	1		

WT51F516

暫存器名稱	位址	復位預設値 (Hex)	參照章節
SPI中斷清除暫存器	0xC2	00	6.15
SPI 旗標暫存器	0xC3	00	6.15
SPI 速度設定暫存器	0xC4	00	6.15
SPI FIFO 控制暫存器	0xC8	00	6.15
SPI FIFO 傳送狀態暫存器	0xC9	80	6.15
SPI FIFO 接收狀態暫存器	0xCA	00	6.15
SPI傳送接收緩衝暫存器	0xCB	FF	6.15
模/數轉換器控制暫存器	0xD0	80	6.16
模/數轉換器轉換數據高位元組暫存器	0xD1	00	6.16
模/數轉換器電壓比較喚醒數據高位元組暫存器	0xD2	80	6.16
模/數轉換器通道控制暫存器	0xD3	00	6.16
模/數轉換器轉換數據低位元組暫存器	0xD4	00	6.16
模/數轉換器電壓比較喚醒數據低位元組暫存器	0xD5	00	6.16
模/數轉換器溫度感應控制暫存器	0xD6	00	6.16
模/數轉換器設定控制暫存器	0xD7	04	6.16
溫度感應器設定控制暫存器	0xD8	80	6.19
比較器控制暫存器	0xD9	C0	6.17
E²PROM 致能暫存器 1	0xE0	00	6.20
E²PROM 致能暫存器 2	0xE1	00	6.20
E²PROM 位址低位元組暫存器	0xE2	FF	6.20
E²PROM 位址高位元組暫存器	0xE3	0F	6.20
E²PROM 控制暫存器	0xE4	08	6.20
E²PROM 數據暫存器	0xE8	00	6.20

內建可編程 Flash 8 位元微控制器

6.2 I/O 端口

6.2.1 特性

- ◆ 共 24 個可程式化 I/O,其中包含 GPIOA[7:0]、GPIOB[7:0]、GPIOC[7:0]
- ◆ 某些 I/O 具有特殊功能 (如 ADC、PWM 等),可透過特殊暫存器進行設定

6.2.2 暫存器

WT51F516的 I/O 相關暫存器分爲以下幾類:

- ◆ GPIOx_OE: 控制輸出/輸入暫存器,用來設定 I/O 為輸出或輸入,當相對應的 GPIOx_OE 位元設為 1,則此 I/O 為輸出埠,具有 4mA 之驅動能力
- ◆ GPIOx_D: 數據暫存器,藉由此暫存器來讀取 I/O 的數據或設定 I/O 的輸出
- ◆ GPIOx_PHN: 內部上拉電阻致能暫存器,當 I/O 設定為輸入埠時(透過 GPIOx_OE),此時此暫存器可以來設定 I/O 是否具有上拉電阻,當相對應的 GPIOx_PHN 位元設為 0,則此 I/O 具有內部上拉電阻
- ◆ GPIOx_TYP: 輸出模式設定暫存器,用來設定 I/O 為推拉式 (Push-Pull) 或開汲極 (Open Drain)

通用 I/O 端口 A 輸出致能控制暫存器 GPIOA_OE (外部記憶體位址: 0x10)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	GPIOA_OE[7:0]							

位元編號	位符號	說明
7-0	GPIOA_OE[7:0]	通用 I/O 端口 A 輸出/輸入設定
		1: 輸出
		0: 輸入 (預設値)

通用 I/O 端口 B 輸出致能控制暫存器 GPIOB_OE (外部記憶體位址: 0x11)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				GPIOB_	OE[7:0]			

位元編號	位符號	說明
7-0	GPIOB_OE[7:0]	通用 I/O 端口 B 輸出/輸入設定
		1: 輸出
		0: 輸入 (預設値)

通用 I/O 端口 C 輸出致能控制暫存器 GPIOC_OE (外部記憶體位址: 0x12)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	GPIOC_OE[7:0]							

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-0	GPIOC_OE[7:0]	通用 I/O 端口 C 輸出/輸入設定
		1: 輸出
		0: 輸入 (預設値)

通用 I/O 端口 A 數據暫存器 GPIOA_D (外部記憶體位址: 0x13)

石	位值:	UUL
1月	11/1旧:	UUI

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		GPIOA_D[7:0]						

位元編號	位符號	說明
7-0	GPIOA_D[7:0]	通用 I/O 端口 A 輸出/輸入數據

通用 I/O 端口 B 數據暫存器 GPIOB_D (外部記憶體位址: 0x14)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOB_D[7:0]							

位元編號	位符號	說明
7-0	GPIOB D[7:0]	通用 I/O 端口 B 輸出/輸入數據

通用 I/O 端口 C 數據暫存器 GPIOC_D (外部記憶體位址: 0x15)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOC_D[7:0]							

位元編號	位符號	說明
7-0	GPIOC_D[7:0]	通用 I/O 端口 C 輸出/輸入數據

通用 I/O 端口 A 致能內部上拉電阻暫存器 GPIOA_PHN (外部記憶體位址: 0x16)

復位値: FFh

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOA_PHN[7:0]							

位元編號	位符號	說明
7-0	GPIOA_PHN[7:0]	致能通用 I/O 端口 A 上拉電阻設定 1: 禁能上拉電阻 (預設値) 0: 致能上拉電阻

WT51F516

內建可編程 Flash 8 位元微控制器

復位化	古:	FFh
NA I M. II	н.	

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOB_PHN[7:0]							

位元編號	位符號	說明
7-0	GPIOB_PHN[7:0]	致能通用 I/O 端口 B 上拉電阻設定 1: 禁能上拉電阻 (預設値)
		0: 致能上拉電阻 (Jg成恒)

通用 I/O 端口 C 致能內部上拉電阻暫存器 GPIOC_PHN (外部記憶體位址: 0x18)

復位値: FFh

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Ī	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
Ī	名稱				GPIOC_	PHN[7:0]			

位元編號	位符號	說明
7-0	GPIOC_PHN[7:0]	致能通用 I/O 端口 C 上拉電阻設定 1: 禁能上拉電阻 (預設値) 0: 致能上拉電阻

通用 I/O 端口 A 輸出型態控制暫存器 GPIOA_TYP (外部記憶體位址: 0x19)

復位値: FFh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位				
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫				
名稱		GPIOA_TYP[7:0]										

位元編號	位符號	說明
7-0	GPIOA_TYP[7:0]	通用 I/O 端口 A 輸出型態設定
		1:輸出型態爲推拉式 (push-pull) (預設値)
		0: 輸出型態爲開汲極 (open-drain)

通用 I/O 端口 B 輸出型態控制暫存器 GPIOB_TYP (外部記憶體位址: 0x1A)

復位値: FFh

	位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Ī	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
Ī	名稱				GPIOB_	TYP[7:0]			

位元編號	位符號	說明
7-0	GPIOB_TYP[7:0]	通用 I/O 端口 B 輸出型態設定
		1:輸出型態爲推拉式 (push-pull) (預設値)
		0:輸出型態爲開汲極 (open-drain)

WT51F516

內建可編程 Flash 8 位元微控制器

通用 I/O 端口 C 輸出型態控制暫存器 GPIOC_TYP (外部記憶體位址: 0x1B)

復位値: FFh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位				
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫				
名稱		GPIOC_TYP[7:0]										

位元編號	位符號	說明
7-0	GPIOC_TYP[7:0]	通用 I/O 端口 C 輸出型態設定 1: 輸出型態為推拉式 (push-pull) (預設值) 0: 輸出型態為開汲極 (open-drain)

6.2.3 端口共用

主要用來設定 I/O 特殊使用之功能,如 SPI、I²C、PWM、ADC等。

複合功能設定暫存器 1 GPIO_FUN1 (外部記憶體位址: 0x1C)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	EN_SIIC_IO	EN_SPI_IO	EN_CEC_IO	EN_UART0_IO	EN_PWM_IO[3:0]			

位元編號	位符號	說明
7	EN_SIIC_IO	設定 GPIO 複合功能
		1: 致能 I ² C SDA 和 SCL 腳位,會強制將 GPIO 設定為 I ² C SDA 和 SCL
		腳位,而不是 GPIO 功能
		0: GPIO (預設値)
6	EN_SPI_IO	設定 GPIO 複合功能
		1: 致能 SPI MISO, MOSI, SCK 腳位, 會強制將 GPIO 設定為 SPI MISO,
		MOSI,SCK 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
5	EN_CEC_IO	設定 GPIO 複合功能
		1: 致能 CEC 腳位,會強制將 GPIO 設定為 CEC 腳位,而不是 GPIO
		功能
		0: GPIO (預設値)
4	EN_UART0_IO	設定 GPIO 複合功能
		1: 致能 UARTO 腳位,會強制將 GPIO 設定為 UARTO 腳位,而不是 GPIO
		功能
		0: GPIO (預設値)
3-0	EN_PWM_IO[3:0]	設定 GPIO 複合功能
		1: 致能 PWM 腳位,會強制將 GPIO 設定為 PWM 腳位,而不是 GPIO
		功能
		0: GPIO (預設値)

複合功能設定暫存器 2 GPIO_FUN2 (外部記憶體位址: 0x1D)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位				
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫				
名稱		EN_AD_IO[7:0]										

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7	EN_AD_IO[7:0]	設定 GPIO 複合功能
		1: 致能 ADC7 腳位,會強制將 GPIO 設定為 ADC7 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
6		設定 GPIO 複合功能
		1: 致能 ADC6 腳位,會強制將 GPIO 設定為 ADC6 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
5		設定 GPIO 複合功能
		1: 致能 ADC5 腳位,會強制將 GPIO 設定為 ADC5 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
4		設定 GPIO 複合功能
		1: 致能 ADC4 腳位,會強制將 GPIO 設定為 ADC4 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
3		設定 GPIO 複合功能
		1: 致能 ADC3 腳位,會強制將 GPIO 設定為 ADC3 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
2		設定 GPIO 複合功能
		1: 致能 ADC2 腳位,會強制將 GPIO 設定為 ADC2 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
1		設定 GPIO 複合功能
		1: 致能 ADC1 腳位,會強制將 GPIO 設定為 ADC1 腳位,而不是 GPIO 功能
		0: GPIO (預設値)
0		設定 GPIO 複合功能
		1: 致能 ADC0 腳位,會強制將 GPIO 設定為 ADC0 腳位,而不是 GPIO 功能
		0: GPIO (預設値)

複合功能設定暫存器 3 GPIO_FUN3 (外部記憶體位址: 0x1F)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	EN_ACOMP_IO	EN_UART1_IO	保	留	EN_P0_IO[3:0]			

位元編號	位符號	說明
7	EN_ACOMP_IO	設定 GPIO 複合功能
		1: 致能 ACOMP腳位,會強制將 GPIO 設定為 ACOMP腳位,而不是 GPIO
		功能
		0: GPIO (預設値)
6	EN_UART1_IO	設定 GPIO 複合功能
		1: 致能 UART1 腳位,會強制將 GPIO 設定為 UART1 腳位,而不是 GPIO
		功能
		0: GPIO (預設値)
5-4	保留	-
3-0	EN_P0_IO[3:0]	設定 GPIO 複合功能
		1: 致能 8051 P0[x]腳位,會強制將 GPIO 設定為 8051 P0[x]腳位,而不是
		GPIO 功能
		0: GPIO (預設値)

-: 未能使用。

內建可編程 Flash 8 位元微控制器

註:

- (a) EN_P0_IO[3:0]: 致能 P0[3:0] IO PAD,可設定 GPIOx_TYP[x]控制 IO type
- (b) UG320 GPIOC1 腳位,PIN#2 (GPIOC1/XTALO) 設定爲 GPIO 時,PIN#1 (XTALI) 必須接地。
- (c) 在 20pin 和 16pin 包裝裡,內部有一些 GPIO 沒有拉出來,爲了減少耗電必須致能內部 pull high。

ADC 複合功能設定表:

- KINIGKEY-					
ADC	暫存器設定	Shared with GPIO			
ADC7	EN_AD_IO[7]	GPIOB7			
ADC6	EN_AD_IO[6]	GPIOB6			
ADC5	EN_AD_IO[5]	GPIOB5			
ADC4	EN_AD_IO[4]	GPIOB4			
ADC3	EN_AD_IO[3]	GPIOB3			
ADC2	EN_AD_IO[2]	GPIOB2			
ADC1	EN_AD_IO[1]	GPIOB1			
ADC0	EN_AD_IO[0]	GPIOB0			

ADC VREF 複合功能設定表:

ADC VREF	暫存器設定	Shared with GPIO
VREF	VREF_SEL[2:0]	GPIOA7

SPI 複合功能設定表:

SPI	暫存器設定	Shared with GPIO
SCK	EN_SPI_IO	GPIOC7
MOSI	EN_SPI_IO	GPIOA5
MISO	EN_SPI_IO	GPIOC6
STB	EN_SPI_IO	GPIOA4

UART 複合功能設定表:

UART	暫存器設定	Shared with GPIO
RXD	EN_UART0_IO	GPIOC3
TXD	EN_UART0_IO	GPIOC4
RXD1	EN_UART1_IO	GPIOC6
TXD1	EN_UART1_IO	GPIOC7

I²C 複合功能設定表:

I ² C	暫存器設定	Shared with GPIO
SDA	EN_SIIC_IO	X
SCL	EN_SIIC_IO	X

內建可編程 Flash 8 位元微控制器

比較器複合功能設定表:

ACOM	暫存器設定	Shared with GPIO
ACIN	EN_ACOMP_IO	GPIOB1
ACIP	EN_ACOMP_IO	GPIOB0
ACO	EN_ACOMP_IO	GPIOA0

PWM 複合功能設定表:

PWM	暫存器設定	Shared with GPIO
PWM0	EN_PWM_IO[0]	GPIOC5
PWM1	EN_PWM_IO[1]	GPIOA0
PWM2	EN_PWM_IO[2]	GPIOA3
PWM3	EN_PWM_IO[3]	GPIOA4

CEC 複合功能設定表:

PWM	PWM 暫存器設定				
CEC	EN CEC IO	GPIOA2			

內建可編程 Flash 8 位元微控制器

6.3 中斷

WT51F516 提供 7 個 8052 向量中斷源,即 8052 外部中斷 INT0、8052 外部中斷 INT1、計時/計數器中斷 TF0、計時/計數器中斷 TF1、串行口中斷(RI0/TI0)、計時/計數器中斷 TF2、串行口中斷(RI1/TI1)。

每個中斷源都在特殊暫存器(SFR)中有自已的致能控制位元,透過特殊暫存器 IE 及 XICON 選擇致能或禁能。

當中斷發生時,CPU將會由主程序跳至中斷程序向量,如下表所示,一旦多個中斷同時發生,就從較高優先等級的中斷先執行,再由RETI指令返回主程序。倘若有中斷旗標位元被設定,處理器將再進入中斷處理程式。

8052 的 7 個中斷向量表與優先權順序:

中斷源	中斷向量位址	優先權順序 (初始設定値)	開啓中 斷 設定
8052 外部中斷 0	03H	1	IE.0 (EX0)
計時/計數器 0 中斷	0BH	2	IE.1 (ET0)
8052 外部中斷 1	13H	3	IE.2 (EX1)
計時/計數器 1 中斷	1BH	4	IE.3 (ET1)
串行口 0 中斷 (UART0)	23H	5	IE.4 (ES)
計時/計數器 2 中斷	2BH	6	IE.5 (ET2)
串行口 1 中斷 (UART1)	33H	7	IE.6 (ES1)

中斷致能暫存器 0

IE0 (8052 interrupt enable register,包括 INTO/INT1) Address: A8H

1	夏位値: UXUU	
	0	

EA	ES1	ET2	ES	ET1	EX1	ET0	EX0		
位元編號	位符	守號			說明				
7	E	A	1: 致能所有中斷功能						
			0: 禁能所有中斷功能						

	I	N-2/4
7	EA	1: 致能所有中斷功能
		0: 禁能所有中斷功能
6	ES1	1: 致能串行口 1 中斷
		0: 禁能串行口 1 中斷
5	ET2	1: 致能計時/計數器 2 中斷
		0: 禁能計時/計數器 2 中斷
4	ES	1: 致能串行口 0 中斷
		0: 禁能串行口 0 中斷
3	ET1	1: 致能計時/計數器 1 中斷
		0: 禁能計時/計數器 1 中斷
2	EX1	1: 致能 8052 外部中斷 1 中斷
		0: 禁能 8052 外部中斷 1 中斷
1	ET0	1: 致能計時/計數器 0 中斷
		0: 禁能計時/計數器 0 中斷
0	EX0	1: 致能 8052 外部中斷 0 中斷
		0: 禁能 8052 外部中斷 0 中斷

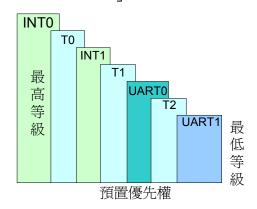
內建可編程 Flash 8 位元微控制器

中斷優先權暫存器

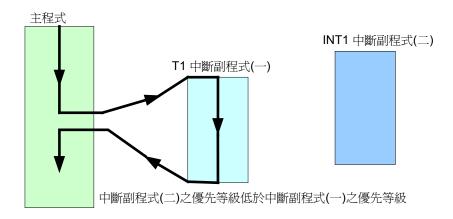
IP (8052 interrupt priority register) Address: B8H

復位値: 0x00

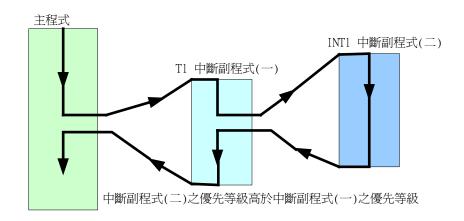
7	6	5	4	3	2	1	0
-	PS1	PT2	PS	PT1	PX1	PT0	PX0


位元編號	位符號	說明
7	保留	-
6	PS1	定義串行口 1 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
5	PT2	定義計時/計數器 2 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
4	PS	定義串行口 0 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
3	PT1	定義計時/計數器 1 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
2	PX1	定義外部中斷 1 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
1	PT0	定義計時/計數器 0 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權
0	PX0	定義外部中斷 0 之中斷優先權
		1: 具有高優先權
		0: 具有低優先權

^{-:} 未能使用。

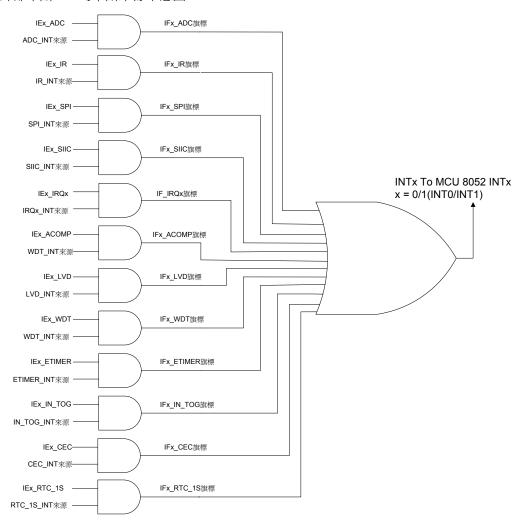


內建可編程 Flash 8 位元微控制器


如下圖所示,若都沒有在中斷優先權暫存器(IP)裡設定優先等級,則中斷的優先等級為「INT0 > T0 > INT1 > T1 > UART0 > T2 > UART1」

若將其中任一個中斷設爲高優先等級,例如讓 PT1 = 1,則中斷的優先等級變爲 「T1 > INT0 > T0 > INT1 > UART0 > T2 > UART1 」

若讓 PT1 = $1 \cdot PX1 = 1 \cdot$ 則中斷的優先等級變爲「INT1 > T1 > INT0 > T0 > UART0 > T2 > UART1」,以此類推。如下圖所示,分別是不同優先等級下,程式執行的流程:


內建可編程 Flash 8 位元微控制器

6.3.1 8052 外部中斷 0/1

WT51F516 從 8052 的外部中斷 0/1 衍生成 12 個周邊中斷如下:

- 1. SPI 中斷
- 2. I2C 中斷
- 3. 比較器 (ACOMP) 中斷
- 4. 低壓偵測 (LVD) 中斷
- 5. 實時定時器中斷
- 6. 增強型計時/計數器中斷
- 7. 通用 I/O 端口輸入觸發中斷
- 8. IR 中斷
- 9. CEC 中斷
- 10. IRQ 外部中斷
- 11. ADC 中斷
- 12. RTC 1S 中斷

下圖爲 8052 外部中斷 0/1 的中斷來源示意圖:

WT51F516

內建可編程 Flash 8 位元微控制器

8052 外部中斷 0 控制暫存器 0 IEO_CTL0 (外部記憶體位址: 0x30)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	-	讀/寫	讀/寫
名稱	IE0_ETM	IE0_IN_TOG	IE0_LVD	IE0_WDT	IE0_ACOMP	保留	IE0_SPI	IE0_SIIC

位元編號	位符號	說明
7	IE0_ETM	1: 致能 Enhanced Timer 中斷由 INT0 產生
		0: 禁能 Enhanced Timer 中斷由 INT0 產生
6	IE0_IN_TOG	1: 致能 All-Input Toggle 中斷由 INT0 產生
		0: 禁能 All-Input Toggle 中斷由 INT0 產生
5	IE0_LVD	1: 致能 LVD 中斷由 INT0 產生
		0: 禁能 LVD 中斷由 INTO 產生
4	IE0_WDT	1: 致能 Watch Timer 中斷由 INT0 產生
		0: 禁能 Watch Timer 中斷由 INT0 產生
3	IE0_ACOMP	1: 致能 ACOMP 中斷由 INTO 產生
		0: 禁能 ACOMP 中斷由 INTO 產生
2	保留	-
1	IE0_SPI	1: 致能 SPI 中斷由 INT0 產生
		0: 禁能 SPI 中斷由 INT0 產生
0	IE0_SIIC	1: 致能 SI ² C 中斷由 INTO 產生
		0: 禁能 SI ² C 中斷由 INTO 產生

-: 未能使用。

8052 外部中斷 0 控制暫存器 1 IEO_CTL1 (外部記憶體位址: 0x31)

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		IE0_IF	RQ[3:0]		IE0_RTC_1S	IE0_KADC	IE0_IR	IE0_CEC

位元編號	位符號	說明
7-4	IE0_IRQ[3:0]	1: 致能 IRQ[3:0]中斷由 INT0 產生
		0: 禁能 IRQ[3:0]中斷由 INT0 產生
3	IE0_RTC_1S	1: 致能 RTC1S 中斷由 INT0 產生
		0: 禁能 RTC1S 中斷由 INT0 產生
2	IE0_KADC	1: 致能 ADC 中斷由 INTO 產生
		0: 禁能 ADC 中斷由 INTO 產生
1	IE0_IR	1: 致能 IR 中斷由 INTO 產生
		0: 禁能 IR 中斷由 INT0 產生
0	IE0_CEC	1: 致能 CEC 中斷由 INTO 產生
		0: 禁能 CEC 中斷由 INTO 產生

WT51F516

內建可編程 Flash 8 位元微控制器

8052 外部中斷 1 控制暫存器 0 IE1_CTL0 (外部記憶體位址: 0x32)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	-	讀/寫	讀/寫
名稱	IE1_ETM	IE1_IN_TOG	IE1_LVD	IE1_WDT	IE1_ACOMP	保留	IE1_SPI	IE1_SIIC

位元編號	位符號	說明
7	IE1_ETM	1: 致能 Enhanced Timer 中斷由 INT1 產生
		0: 禁能 Enhanced Timer 中斷由 INT1 產生
6	IE1_IN_TOG	1: 致能 All-Input Toggle 中斷由 INT1 產生
		0: 禁能 All-Input Toggle 中斷由 INT1 產生
5	IE1_LVD	1: 致能 LVD 中斷由 INT1 產生
		0: 禁能 LVD 中斷由 INT1 產生
4	IE1_WDT	1: 致能 Watch Timer 中斷由 INT1 產生
		0: 禁能 Watch Timer 中斷由 INT1 產生
3	IE1_ACOMP	1: 致能 ACOMP 中斷由 INT1 產生
		0: 禁能 ACOMP 中斷由 INT1 產生
2	保留	-
1	IE1_SPI	1: 致能 SPI 中斷由 INT1 產生
		0: 禁能 SPI 中斷由 INT1 產生
0	IE1_SIIC	1: 致能 SI ² C 中斷由 INT1 產生
		0: 禁能 SI ² C 中斷由 INT1 產生

-: 未能使用。

8052 外部中斷 1 控制暫存器 1 IE1_CTL1 (外部記憶體位址: 0x33)

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		IE1_IF	RQ[3:0]		IE1_RTC_1S	IE1_KADC	IE1_IR	IE1_CEC

位元編號	位符號	說明
7-4	IE1_IRQ[3:0]	1: 致能 IRQ[3:0]中斷由 INT1 產生
		0: 禁能 IRQ[3:0]中斷由 INT1 產生
3	IE1_RTC_1S	1: 致能 RTC1S 中斷由 INT1 產生
		0: 禁能 RTC1S 中斷由 INT1 產生
2	IE1_KADC	1: 致能 ADC 中斷由 INT1 產生
		0: 禁能 ADC 中斷由 INT1 產生
1	IE1_IR	1: 致能 IR 中斷由 INT1 產生
		0: 禁能 IR 中斷由 INT1 產生
0	IE1_CEC	1: 致能 CEC 中斷由 INT1 產生
		0: 禁能 CEC 中斷由 INT1 產生

WT51F516

內建可編程 Flash 8 位元微控制器

8052 外部中斷旗標暫存器 0 IF_FLAG0 (外部記憶體位址: 0x34)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	ı	讀	讀
名稱	IF_ETM	IF_IN_TOG	IF_LVD	IF_WDT	IF_ACOMP	保留	IF_SPI	IF_SIIC

位元編號	位符號	說明			
7	IF_ETM	1: Enhanced Timer 中斷事件旗標			
6	IF_IN_TOG	1: All-Input Toggle 中斷事件旗標			
5	IF_LVD	1: LVD 中斷事件旗標			
4	IF_WDT	1: Watch Timer 中斷事件旗標			
3	IF_ACOMP	1: ACOMP 中斷事件旗標			
2	保留	-			
1	IF_SPI	1: SPI 中斷事件旗標			
0	IF_SIIC	1: S I ² C 中斷事件旗標			

^{-:} 未能使用。

8052 外部中斷旗標暫存器 1 IF_FLAG1 (外部記憶體位址: 0x35)

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	副	讀	讀
名稱	IF_IRQ[3:0]				IF_RTC_1S	IF_KADC	IF_IR	IF_CEC

位元編號	位符號	說明
7-4	IF_IRQ[3:0]	1: IRQ 中斷事件旗標,IRQ 中斷清除
3	IF_RTC_1S	1: RTC 1S Toggle 中斷事件旗標,RTC_1S Toggle 中斷清除
2	IF_KADC	1: ADC 中斷事件旗標,ADC 中斷清除
1	IF_IR	1: IR 中斷事件旗標,IR 中斷清除
0	IF_CEC	1: CEC 中斷事件旗標,CEC 中斷清除

內建可編程 Flash 8 位元微控制器

6.4 通用異步收發器 (UART)

WT51F516 有 2 個通用異步接收/傳輸器,即 UART0、UART1。

作爲標準 8052 的 UART, 其傳輸速率可通過 SFR 中的串行傳輸速率暫存器來選擇。

特殊功能暫存器 SBUFx 在接收跟傳輸時,是對映到兩個單獨暫存器,即一個傳輸緩衝區和一個接收緩衝區。

傳送數據: 寫入數據到 SBUFx 暫存器並設定這些數據在串行輸出緩衝區,並開始傳輸。

讀取數據: 讀取 SBUFx 暫存器的數據及從串行接收緩衝區讀取數據,串行口可同時傳輸和接收數據,它也可在接

收時緩存 1 位元組,如 CPU 在第一個位元組傳輸完成之前讀取第二個位元組,以防接收數據丟失。

通用異步收發器之相關暫存器:

特殊暫存器名稱	位址	說明
PCON	87H	8052 電源控制暫存器
SCON0	98H	串列阜 0, 控制暫存器
SBUF0	99H	串列阜 0, 資料緩衝暫存器
SBRG0H	9AH	串列鲍率產生器, 高位元
SBRG0L	9BH	串列鲍率產生器,低位元
SCON1	D8H	串列阜 1, 控制暫存器
SBUF1	D9H	串列阜 1, 資料緩衝暫存器
SBRG1H	DAH	串列鲍率產生器 1,高位元
SBRG1L	DBH	串列鲍率產生器 1,低位元

UARTO 相關暫存器

PCON (8052 Power Control Register) Address: 87H

		<u> </u>					
7	6	5	4	3	2	1	0
SMOD	-	-	-	-	-	-	-

SMOD: 串行口 0(UART0)雙倍傳輸速率位元。

SBUF0 (8052 UART0 buffer) Address: 99H

7	6	5	4	3	2	1	0
SBUF0.7	SBUF0.6	SBUF0.5	SBUF0.4	SBUF0.3	SBUF0.2	SBUF0.1	SBUF0.0

UARTO 之串行數據緩衝區,用來存收從 UARTO 所接收到的數據或等待傳送之數據。

SBRG0H: Address: 9Ah

7	6	5	4	3	2	1	0
SBRG_EN	BRG_M[10]	BRG_M[9]	BRG_M[8]	BRG_M[7]	BRG_M[6]	BRG_M[5]	BRG_M[4]

用來規劃 UARTO 之傳輸速率,與 SBRGOL 搭配使用。

^{-:} 未能使用。

內建可編程 Flash 8 位元微控制器

SBRG0L: Address: 9Bh

7	6	5	4	3	2	1	0
BRG_M[3]	BRG_M[2]	BRG_M[1]	BRG_M[0]	BRG_F[3]	BRG_F[2]	BRG_F[1]	BRG_F[0]

用來規劃 UARTO 之傳輸速率,與 SBRG0H 搭配使用。

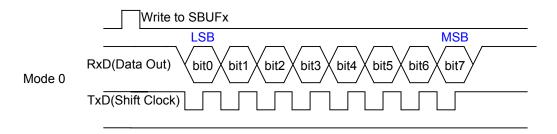
SCON0 (8052 UART0 Control Register) Address: 98H

7	6	5	4	3	2	1	0
SM0_1	SM0_2	SM0_3	REN_0	TB8_0	RB8_0	TI_0	RI_0

位元編號	位符號	說明
7-6	SM0_1, SM0_2	串行口 0 模式選擇
		00: 模式 0
		01: 模式 1
		10: 模式 2
		11: 模式 3
5	SM0_3	多處理機通信致能位元
		模式 0 時,SMO_3 必須爲 0;此時將禁能多重處理器通訊功能。
		模式 1、模式 2 或模式 3 時,若 SM0_3 = 1,將可執行多重處理器通訊功能。
4	REN_0	本位元爲串行接收致能位元,須由軟體清除禁止接收。
		REN_0 = 1,開始接收。
		REN_0 = 0,停止接收。
3	TB8_0	模式 2 或模式 3 傳送資料時,本位元爲第 9 傳送位元,可用軟體來設定或清
		除。
2	RB8_0	模式 0 時,本位元無作用。
		模式 1 時,若 SMO_3 = 0,則本位元爲停止位元。
		模式 2 或模式 3 接收資料時,本位元爲第 9 個接收位元。
1	TI_0	本位元爲傳送中斷旗標,當中斷結束時,本位元並不會恢復爲 0,必須由軟體 清除。
		模式 0 時,若完成傳送第 8 位元,則本位元自動設定為 1,並提出 TI_0 中斷。
		模式 1、模式 2 或模式 3 時,若完成傳送停止位元,則本位元自動設定為 1,
		並提出 TI_0 中斷。
0	RI_0	本位元爲接收中斷旗標, 當中斷結束時, 本位元並不會恢復爲 0, 必須由軟體
		清除。
		模式 0 時,若完成接收第 8 位元,則本位元自動設定為 1,並提出 RI_0 中斷。
		模式 1、模式 2 或模式 3 時,若完成接收到停止位元,則本位元自動設定爲 1,
		並提出 RI_0 中斷。

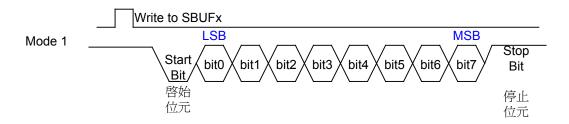
串行介面 0 由以下 4 種模式可以設定

SM0_1	SM0_2	模式	功能	傳輸速率
0	0	0	移位暫存器	Fosc/12
0	1	1	8 位元之 UART	軟體規劃
1	0	2	8 位元之 UART	Fosc/32 或 Fosc/64
1	1	3	9 位元之 UART	軟體規劃


^{*}Fosc = MCU clock

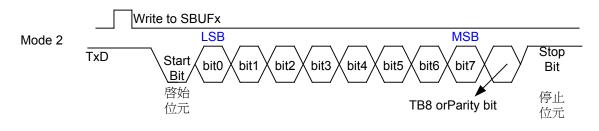
內建可編程 Flash 8 位元微控制器

模式 0 (Mode 0)


模式 0 是以固定鮑率之移位式資料傳輸,其鮑率爲系統時鐘源的十二分之一(即 fOSC/12),若在 12 MHz 下,則 其鮑率爲 1Mbps。在此模式下,不管是接收數據還是數據傳送,CPU 的 RxD 連接串行資料線,TxD 連接移位脈波線。執行數據接收時,由 TxD 接腳送出移位脈波,而由 RxD 接腳收下串行資料;執行數據傳送時,也是依據TxD 接腳所送出的移位脈波,而由 RxD 接腳送出串行資料。

模式 1 (Mode 1)

模式 1 是以可變的鮑率進行串行數據傳輸,其鮑率可由 Timer 1 來控制 (若是支援 UART1 還可使用 Timer 2 控制鮑率)。


在此模式下,WT51F516 的 RxD 接腳連接目的地的 TxD 接腳、WT51F516 的 TxD 接腳連接目的地的 RxD 接腳。模式 1 的資料長度為 10 位元,包括起始位元(start bit)、8 個位元的資料,以及停止位元(stop bit),其中第一個位元就是低準位的起始位元(start bit = 0),緊接著是由 bit 0(即 LSB)開始的 8 位元資料,而接續於 bit 7(MSB)之後的是高準位的停止位元(stop bit = 1)。

模式 2 (Mode 2)

模式 2 是以 fOSC/32 (SMOD = 1) 或 fOSC/64 (SMOD = 0) 的鮑率進行串行數據傳輸,而其線路的連接,也是 WT51F516 的 RxD 接腳連接目的地的 TxD 接腳、WT51F516 的 TxD 接腳連接目的地的 RxD 接腳。模式 2 的資料是由 11 位元所組成,包括起始位元(start bit)、8 個位元的資料、同位位元(parity bit),以及停止位元(stop bit),其中第一個位元就是低準位的起始位元,緊接著是由 bit 0(即 LSB)開始的 8 位元資料,而接續於 bit 7 之後的是同位位元,最後則是高準位的停止位元。

在傳送中, SCON0 中的 TB8_0 輸出第 9 位; 在接收中, SCON0 中的 RB8_0 將被影響。

內建可編程 Flash 8 位元微控制器

模式 3 (Mode 3)

模式 3 是以可變的鮑率進行串行數據傳輸,其鮑率可由 Timer 1 來控制(若是支援 UART1 還可使用 Timer 2 控制 鮑率)。除此之外,模式 3 與模式 2 幾乎完全一樣。

UART0 之串行傳輸速率表:

SBRG_EN (SBRG0H.7)	SMOD1 (PCON.7)	Baud Rate for UART0
0	0	$\frac{1}{32} \times \frac{f_{osc}}{12 \times (256 - \text{TH1})}$
0	1	$\frac{1}{16} \times \frac{f_{osc}}{12 \times (256 - TH1)}$
1	Х	$\frac{f_{osc}}{16*(BRG_M[10:0] + \frac{BRG_F[3:0]}{16})}$

UART0 之傳送之速率 =
$$\frac{f_{osc}}{16*(BRG_M[10:0] + \frac{BRG_F[3:0]}{16})}$$

傳輸速率支援表:

	12 MHz							
Bits/sec	Baud Rate Register	BRG_M	BRG_F	Actual	Error			
600	1250	1250	0	600	0.0%			
1200	625	625	0	1200	0.0%			
2400	312.5	312	8	2400	0.0%			
4800	156.25	156	4	4800	0.0%			
9600	78.125	78	2	9600	0.0%			
14400	52.083	52	1	14405	0.04%			
19200	39.0625	39	1	19200	0.0%			
38400	19.531	19	8	38461	0.16%			
57600	13	13	0	57692	0.16%			
115200	6.5	6	8	115384	0.16%			
230400	3.25	3	4	230769	0.16%			

內建可編程 Flash 8 位元微控制器

UART1 相關暫存器

SBUF1 (8052 UART1 buffer) Address: D9H

7	6	5	4	3	2	1	0
SBUF1.7	SBUF1.6	SBUF1.5	SBUF1.4	SBUF1.3	SBUF1.2	SBUF1.1	SBUF1.0

串行埠1之串行數據緩衝區,用來存收從 UART 所接收到的數據或等待傳送之數據

SBRG1H: Address: DAh

7	6	5	4	3	2	1	0
SBRG1_EN	BRG1_M[10]	BRG1_M[9]	BRG1_M[8]	BRG1_M[7]	BRG1_M[6]	BRG1_M[5]	BRG1_M[4]

用來規畫 UART1 之傳輸速率,與 SBRG1L 搭配使用

SBRG1L: Address: DBh

7	6	5	4	3	2	1	0
BRG1_M[3]	BRG1_M[2]	BRG1_M[1]	BRG1_M[0]	BRG1_F[3]	BRG1_F[2]	BRG1_F[1]	BRG1_F[0]

用來規畫 UART1 之傳輸速率,與 SBRG1H 搭配使用

SCON1 (8052 UART1 Control Register) Address: D8H

7	6	5	4	3	2	1	0
SM1_1	SM1_2	SM1_3	REN_1	TB8_1	RB8_1	TI_1	RI_1

串行埠 1 控制暫存器

位元編號	位符號	說明
7-6	SM1_1, SM1_2	串行口 1 模式選擇
		00: 模式 0
		01: 模式 1
		10: 模式 2
		11: 模式 3
5	SM1_3	多處理機通信致能位元
		模式 0 時,SM1_3 必須為 0;此時將禁能多重處理器通訊功能。
		模式 1、模式 2 或模式 3 時,若 SM1_3 = 1,將可執行多重處理器通訊
		功能。
4	REN_1	本位元爲串行接收致能位元,須由軟體清除禁止接收
		REN_1 = 1,開始接收。
		REN_1 = 0,停止接收
3	TB8_1	模式 2 或模式 3 傳送資料時,本位元爲第 9 傳送位元,可用軟體來設
		定或清除。
2	RB8_1	模式 0 時,本位元無作用。
		模式 1 時,若 $SM1_3 = 0$,則本位元爲停止位元。
		模式 2 或模式 3 接收資料時,本位元為第 9 個接收位元。
1	TI_1	本位元爲傳送中斷旗標, 當中斷結束時, 本位元並不會恢復爲 0, 必須
		由軟體清除。

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
		模式 0 時,若完成傳送第 8 位元,則本位元自動設定為 1,並提出 TI_1 中斷。
		模式 1、模式 2 或模式 3 時,若完成傳送停止位元,則本位元自動設 定為 1,並提出 TI_1 中斷。
0	RI_1	本位元爲接收中斷旗標, 當中斷結束時, 本位元並不會恢復爲 0, 必須 由軟體清除。
		模式 0 時,若完成接收第 8 位元,則本位元自動設定為 1,並提出 RI_1 中斷。
		模式 1、模式 2 或模式 3 時,若完成接收到停止位元,則本位元自動 設定為 1,並提出 RI_1 中斷。

串行介面1由以下4種模式可以設定

SM1_1	SM1_2	模式	功能	傳輸速率
0	0	0	移位暫存器	Fosc/12
0	1	1	8 位元之 UART	軟體規劃
1	0	2	8 位元之 UART	Fosc/32 或 Fosc/64
1	1	3	9 位元之 UART	軟體規劃

^{*}Fosc = MCU clock

串行介面 1 的 4 種模式,可參考前面串行介面 0。

UART1 之串行傳輸速率表:

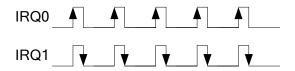
SBRG1_EN (SBRG1H.7)	SMOD2 (PCON.6)	Baud Rate for UART1
0	0	$\frac{1}{32} \times \frac{f_{osc}}{12 \times (65536 - RCAP2)}$
0	1	$\frac{1}{16} \times \frac{f_{osc}}{12 \times (65536 - RCAP2)}$
1	Х	$\frac{f_{osc}}{16*(BRG_M[10:0] + \frac{BRG_F[3:0]}{16})}$

UART1 之傳輸速率 =
$$\frac{f_{osc}}{16*(BRG1_M[10:0] + \frac{BRG_F[3:0]}{16})}$$

內建可編程 Flash 8 位元微控制器

傳輸速率支援表:

	12 MHz							
Bits/sec	Baud Rate Register	BRG_M	BRG_F	Actual	Error			
600	1250	1250	0	600	0.0%			
1200	625	625	0	1200	0.0%			
2400	312.5	312	8	2400	0.0%			
4800	156.25	156	4	4800	0.0%			
9600	78.125	78	2	9600	0.0%			
14400	52.083	52	1	14405	0.04%			
19200	39.0625	39	1	19200	0.0%			
38400	19.531	19	8	38461	0.16%			
57600	13	13	0	57692	0.16%			
115200	6.5	6	8	115384	0.16%			
230400	3.25	3	4	230769	0.16%			



內建可編程 Flash 8 位元微控制器

6.5 外部中斷要求 (IRQ)

- ▶ 支援4個輸入中斷
- ▶ 支援單邊正緣、負緣觸發、正負緣同時觸發

單邊觸發:

正負緣同時觸發:

外部中斷要求(IRQ)控制高位元組暫存器 EN_IRQ0 (外部記憶體位址: 0x3A)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	寫	寫	寫	寫
名稱	EVT_IRQ[3:0]			CLR_IRQ[3:0]				

位元編號	位符號	說明
7-4	EVT_IRQ[3:0]	外部中斷要求狀態,每個位元對應至相關的 IRQ 狀態
		1: 相對應之腳位發生中斷觸發
		0: 相對應之腳位未發生中斷觸發
3-0	CLR_IRQ[3:0]	外部中斷要求清除
		1: 相對應位元寫 1 可清除此中斷狀態
		0: 未動作

外部中斷要求(IRQ)控制低位元組暫存器 EN_IRQ1 (外部記憶體位址: 0x3B)

/有	Κ÷	値・	00h	

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	IRQ_CHG[3:0]				IRQ_EDGE[3:0]			

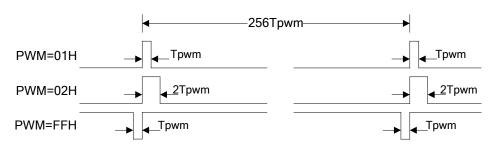
位元編號	位符號	說明
7-4	IRQ_CHG[3:0]	外部中斷要求觸發設定
		1: 雙邊觸發
		0: 單邊觸發 (根據 IRQ_EDGE[3:0]設定正緣或負緣觸發)
3-0	IRQ_EDGE[3:0]	外部中斷要求觸發緣設定
		1: 負緣觸發
		0: 正緣觸發

內建可編程 Flash 8 位元微控制器

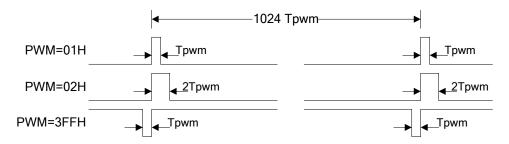
6.6 脈衝寬度調製 (PWM)

WT51F516 提供 4 組 10 位精度的脈衝寬度調製模組,可以產生週期和佔空比。

- ▶ 輸出頻率共有 1024 階; 頻率範圍:
 - (a) 如果 EN PWM IO[3:0] = 00,禁能 PWM 輸出
 - (b) 如果 PWM 時鐘源 = 1 MHz = 1 us


PWM 週期調整值 = 1 MHz / ((PWMCx +1)* 1024) = 1024us * (PWMCx+1)

MAX 週期調整値 = 1024 us*1 = 1024 us = 0.975625 kHz


MIN 週期調整值 = 1024 us*128 = 13102 us = 7.629394531 Hz

PWM output clock (Min / Max)	12 MHz
PWM_BAS_CLK =00 (12 MHz)	91.55 Hz / 11.72 kHz
PWM_BAS_CLK =01 (6 MHz)	45.78 Hz / 5.86 kHz
PWM_BAS_CLK =10 (3 MHz)	22.89 Hz / 2.93 kHz
PWM_BAS_CLK =11 (1 MHz)	7.63 Hz / 0.98 kHz

- Duty、Period 和 Source clock 彼此間有密切的關係,關係如下:
 - (a) 設定 8 bit PWM,PWM 佔空比對應公式. PWM 佔空比從 0/256 到 255/256. PWM output clock = PWM_BAS_CLK / ((PWM_CLKx +1)* 256)

(b) 設定 10 bit PWM, PWM 佔空比對應公式. PWM 佔空比 0/1024 到 1023/1024. PWM output clock = PWM_BAS_CLK / ((PWM_CLKx +1)* 1024)

- ▶ 舉例: Source clock 是 IRC 12 MHz,若 Duty 設為 10-bit 解析度,則 Period 的範圍會在 11.7 kHz 以內。
- ▶ 輸出型態: 推拉輸出 (push pull) 或開汲輸出 (open drain),可透過暫存器 GPIOx_TYP[x]來設定

WT51F516

內建可編程 Flash 8 位元微控制器

PWM 控制暫存器 0 PWM_CTL0 (外部記憶體位址: 0x50)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		PWM_EN[3:0]			PWM_BIT_SEL[3:0]			

位元編號	位符號	說明
7-4	PWM_EN[3:0]	1: 致能 PWM3 功能
		0: 禁能 PWM3 功能
		1: 致能 PWM2 功能
		0: 禁能 PWM2 功能
		1: 致能 PWM1 功能
		0: 禁能 PWM1 功能
		1: 致能 PWM0 功能
		0: 禁能 PWM0 功能
3-0	PWM_BIT_SEL[3:0]	1: PWM3 = 8 bit
		0: PWM3 = 10 bit
		1: PWM2 = 8 bit
		0: PWM2 = 10 bit
		1: PWM1 = 8 bit
		0: PWM1 = 10 bit
		1: PWM0 = 8 bit
		0: PWM0 = 10 bit

PWM 控制暫存器 1 PWM_CTL1 (外部記憶體位址: 0x51)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀/寫	讀/寫
名稱	保留							S_CLK[1:0]

位元編號	位符號	說明
7-2	保留	-
1-0	PWM_BAS_CLK[1:0]	PWM 時鐘源選擇 00: 時鐘源 = RC 12 MHz 01: 時鐘源 = RC 12 MHz /2 10: 時鐘源 = RC 12 MHz /4 11: 時鐘源 = RC 12 MHz /12

-: 未能使用。

PWM 時鐘源控制暫存器 0 PWM_CLK0 (外部記憶體位址: 0x52)

• • • • •		-			•			
位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留			P\	VM CLK0[6:	:0]		

乜	江編號	位符號	說明
	7	保留	-

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
6-0	PWM0_CLK[6:0]	PWM_CLK0[6:0]是設定 PWM0 的週期調整值
		PWM0 output clock = PWM_BAS_CLK/((PWM_CLKX + 1) * 256),時鐘 源透過 PWM_BAS_CLK[1:0]選擇。

-: 未能使用。

PWM 時鐘源控制暫存器 1 PWM_CLK1 (外部記憶體位址: 0x53)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留		PWM_CLK1[6:0]					

位元編號	位符號	說明
7	保留	-
6-0	PWM1_CLK[6:0]	PWM_CLK1[6:0]是設定 PWM1 的週期調整值 PWM1 output clock = PWM_BAS_CLK/((PWM_CLKX + 1) * 256), 時鐘 源透過 PWM_BAS_CLK[1:0]選擇。

-: 未能使用。

PWM 時鐘源控制暫存器 2 PWM_CLK2 (外部記憶體位址: 0x54)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	-		PWM_CLK2[6:0]					

位元編號	位符號	說明
7	保留	-
6-0	PWM2_CLK[6:0]	PWM_CLK2[6:0]是設定 PWM2 的週期調整值 PWM2 output clock = PWM_BAS_CLK/((PWM_CLKX + 1) * 256), 時鐘 源透過 PWM_BAS_CLK[1:0]選擇。

-: 未能使用。

PWM 時鐘源控制暫存器 3 PWM_CLK3 (外部記憶體位址: 0x55)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留		PWM_CLK3[6:0]					

位元編號	位符號	說明
7	保留	-
6-0	PWM3_CLK[6:0]	PWM_CLK3[6:0]是設定 PWM3 的週期調整值 PWM3 output clock = PWM_BAS_CLK/((PWM_CLKX + 1) * 256), 時鐘 源透過 PWM_BAS_CLK[1:0]選擇。

-: 未能使用。

WT51F516

內建可編程 Flash 8 位元微控制器

PWM 佔空比控制低位元組暫存器 0 PWM_DUTYL0 (外部記憶體位址: 0x56)

復位	盾:	80h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		PWM0_DUTY[7:0]						

位元編號	位符號	說明
7-0	PWM0_DUTY[7:0]	設定 PWM0 的佔空比輸出
		PWM0_DUTY[7:0]是設定 PWM0 的佔空比,搭配 PWM0_DUTY[9:8]組成
		10 位元的佔空比調整值。

PWM 佔空比控制高位元組暫存器 0 PWM_DUTYH0 (外部記憶體位址: 0x57)

復位值: 02h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀/寫	讀/寫
名稱		保留)UTY[9:8]

位元編號	位符號	說明
7-2	保留	-
1-0	PWM0_DUTY[9:8]	設定 PWM0 的佔空比輸出 PWM0_DUTY[7:0]是設定 PWM0 的佔空比,搭配 PWM0_DUTY[7:0]組成 10 位元的佔空比調整值。

-: 未能使用。

PWM 佔空比控制低位元組暫存器 1 PWM_DUTYL1 (外部記憶體位址: 0x58)

復位值: 80h

			_			•	-	
位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		PWM1 DUTY[7:0]						

位元編號	位符號	說明
7-0	PWM1_DUTY[7:0]	設定 PWM1 的佔空比輸出
		PWM1_DUTY[7:0]是設定 PWM1 的佔空比,搭配 PWM1_DUTY[9:8]組成 10 位元的佔空比調整值。

PWM 佔空比控制高位元組暫存器 1 PWM_DUTYH1 (外部記憶體位址: 0x59)

復位值: 02h

						•	-	
位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀/寫	讀/寫
名稱			PWM1_D)UTY[9:8]				

位元編號	位符號	說明
7-2	保留	-

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
1-0	PWM1_DUTY[9:8]	設定 PWM1 的佔空比輸出 PWM1_DUTY[7:0]是設定 PWM1 的佔空比, 搭配 PWM1_DUTY[15:8]組成 10 位元的佔空比調整值。

-: 未能使用。

PWM 佔空比控制低位元組暫存器 2 PWM_DUTYL2 (外部記憶體位址: 0x5A)

復位値:	80	h
------	----	---

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		PWM2_DUTY[7:0]						

位元編號	位符號	說明
7-0	PWM2_DUTY[7:0]	設定 PWM2 的佔空比輸出 PWM2_DUTY[7:0]是設定 PWM2 的佔空比,搭配 PWM2_DUTY[9:8]組成 10 位元的佔空比調整值。

PWM 佔空比控制高位元組暫存器 2 PWM_DUTYH2 (外部記憶體位址: 0x5B)

復位值: 02h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀/寫	讀/寫
名稱		保留						OUTY[9:8]

位元編號	位符號	說明
7-2	保留	-
1-0	PWM2_DUTY[9:8]	設定 PWM2 的佔空比輸出 PWM2_DUTY[7:0]是設定 PWM2 的佔空比, 搭配 PWM2_DUTY[15:8]組成 10 位元的佔空比調整值。

-: 未能使用。

PWM 佔空比控制低位元組暫存器 3 PWM_DUTYL3 (外部記憶體位址: 0x5C)

復位値: 80h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		PWM3_DUTY[7:0]						

位元編號	位符號	說明
7-0	PWM3_DUTY[7:0]	設定 PWM3 的佔空比輸出 PWM3_DUTY[7:0]是設定 PWM3 的佔空比,搭配 PWM3_DUTY[9:8]組成 10 位元的佔空比調整值。

內建可編程 Flash 8 位元微控制器

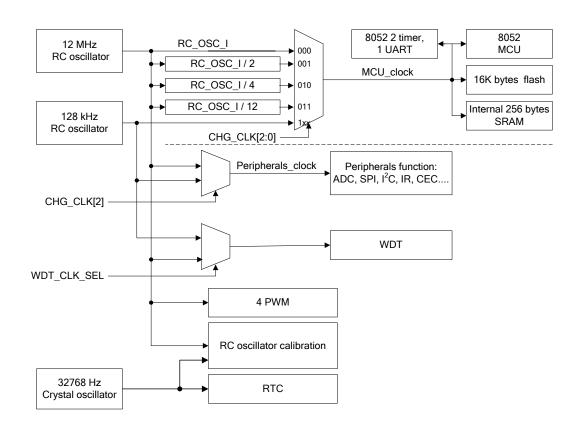
PWM 佔空比控制高位元組暫存器 3 PWM_DUTYH3 (外部記憶體位址: 0x5D)

復位值: 02h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀/寫	讀/寫
名稱			PWM3_D	OUTY[9:8]				

位元編號	位符號	說明
7-2	保留	-
1-0	PWM3_DUTY[9:8]	設定 PWM3 的佔空比輸出 PWM3_DUTY[7:0]是設定 PWM3 的佔空比, 搭配 PWM3_DUTY[15:8]組成 10 位元的佔空比調整值。

^{-:} 未能使用。



內建可編程 Flash 8 位元微控制器

6.7 電源管理

WT51F516 提供四種操作模式,如下:

- ▶ 高速正常模式 (Normal mode)
- ▶ 閒置模式 (Idle mode): MCU_OFF
- ▶ 睡眠模式 (Sleep mode): OSC_OFF
- ▶ 省電模式 (Power-saving mode): PWR_SAVE

OFF mode

PWR_SAVE	OSC_OFF	MCU_OFF	RC12M_OSC_I	MCU_clock	Peripherals_ clock	Wake up wait MCU clock
0	0	0	ON	ON	ON	-
0	0	1	ON	OFF	OFF	4 clock
0	1	0	OFF	OFF	OFF	256 clock
1	0	0	OFF	OFF	OFF	∆T+ 256 clock (*)

^{*} 省電模式 (Power-saving mode) 喚醒後需等待 LDO 100ms + 256 RCOSC MCU 才會回到 Normal mode。

內建可編程 Flash 8 位元微控制器

SYS 系統控制暫存器 0 SYS_CTL0 (外部記憶體位址: 0x01)

復	14	盾·	82 F	ı
			U ZI	

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	-	-	讀/寫	讀/寫
名稱	RST_NDF	OSC_OFF	OSC_OFF2	MCU_OFF	保	留	OSC32K_EN	PWR_SAVE

位元編號	位符號	說明
7	RST_NDF	1: 致能"NRST"腳位數位濾波 (預設)
		0: 禁能"NRST"腳位數位濾波
6	OSC_OFF	1: Power down mode, 關閉 RC 時鐘源和系統時鐘源 (喚醒後 256 RC
		OSC clock,MCU 才會正常動作)
		0: 普通模式
5	OSC_OFF2	1: Power down mode,關閉 RC 時鐘源和系統時鐘源 (喚醒後 8 RC
		OSC clock,MCU 才會正常動作)
		0: 普通模式
4	MCU_OFF	1: MCU OFF mode, 關閉系統時鐘源, 只開啟 RC 時鐘源 (喚醒後 4RC)
	_	OSC clock,MCU 才會正常動作)
		0: 普通模式
3-2	保留	-
1	OSC32K EN	1: 開啓外部 32K 振盪器,如果系統無外部 32K 振盪器,務必將此 bit 設
	_	定爲 0
		0: 關閉外部 32K 振盪器
0	PWR SAVE	1: Power-saving mode
	1	0: 一般模式

-: 未能使用。

SYS 系統控制暫存器 1 SYS_CTL1 (外部記憶體位址: 0x02)

復位值: 20H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	-	讀/寫	讀/寫	讀/寫
名稱	保留	OSCOFF2_CLK_CTL	FLASH_POWER_CTL	CEC_IO_SEL	保留	CH	IG_CLK[2	2:0]

位元編號	位符號	說明
7	保留	-
6	OSCOFF2_CLK_CTL	1: 等待 32 RC OSC clock
		0: 等待 8 RC OSC clock
5	FLASH_POWER_CTL	1: 減少 flash 電源分配時間
4	CEC_IO_SEL	1: 設定 CEC 輸入腳位分配至 GPIOC5
		0: 設定 CEC 輸入腳位分配至 GPIOA2
3	保留	-
2-0	CHG_CLK[2:0]	000: MCU clock = 12 MHz RC oscillator clock (預設値)
		001: MCU clock = 12 MHz RC oscillator clock/2
		010: MCU clock = 12 MHz RC oscillator clock/4
		011: MCU clock = 12 MHz RC oscillator clock/12
		1XX: MCU clock = 128 kHz RC oscillator clock

-: 未能使用。

WT51F516

內建可編程 Flash 8 位元微控制器

SYS 系統控制暫存器 2 SYS_CTL2 (外部記憶體位址: 0x03)

復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	1	-	1	1	-	-
名稱	DIS_GPC1_SMT	DIS_GPA7_SMT			保	留		

位元編號	位符號	說明
7	DIS_GPC1_SMT	GPIOC1 SMT 輸入暫存器控制 (減少耗電)
		1: 禁能 GPIOC1 SMT 輸入
		0: 致能 GPIOC1 SMT 輸入
6	DIS_GPA7_SMT	GPIOA7 SMT 輸入暫存器控制 (減少耗電)
		1: 禁能 GPIOA7 SMT 輸入
		0: 致能 GPIOA7 SMT 輸入
5-0	保留	-

^{-:} 未能使用。

SYS 系統控制暫存器 3 SYS_CTL3 (外部記憶體位址: 0x04)

復位值: 00H

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		Flash_P	rotected		OSC12MRC_PD	OSC128KRC_PD	PD_BPLDO33	PD_LPLDO33

位元編號	位符號	說明
7-4	FLASH_PRO	寫入保護控制位元
		FLASH_PRO[7:4] = 5: 允許寫入
		FLASH_PRO[7:4] = 其它: 無法寫入
3	OSC12MRC_PD	1: 禁能 12 MHz RC 振盪器
		0: 致能 12 MHz RC 振盪器
2	OSC128KRC_PD	1: 禁能 128 kHz RC 振盪器
		0: 致能 128 kHz RC 振盪器
1	PD_BPLDO33	1: 關閉 LDO33 (BIG LDO18)
		0: 普通模式
0	PD_LPLDO33	1: 關閉 LPLDO33 (Low power LDO33)
		0: 普通模式

SYS 系統控制暫存器 4 SYS_CTL3 (外部記憶體位址: 0x0F)

復位值: 20H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	PD_LVR		TEST[6:0]					

位元編號	位符號	說明			
7	PD_LVR	1: 禁能 LVR			
		0: 致能 LVR			
6-0	TEST[6:0]	內部測試使用,必須設定為 0x20h			

WT51F516

內建可編程 Flash 8 位元微控制器

SYS 喚醒控制暫存器 0 WAKEUP_EN0 (外部記憶體位址: 0x20)

復付値:	00H
129 11/1111	UUII

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	I2C_WAKE	WDT_WAK E	ACOMP_WAK E	RTC_500MS_WAKE	LVD_WAKE	保	留	IR_WAKE

位元編號	位符號	說明
7	I2C_WAKE	1: 致能 I ² C 喚醒功能
		0: 禁能 I ² C 喚醒功能
6	WDT_WAKE	1: 致能看門狗計數喚醒功能
		0: 禁能看門狗計數喚醒功能
5	ACOMP_WAKE	1: 致能比較器喚醒功能
		0: 禁能比較器喚醒功能
4	RTC_500MS_WAKE	1: 致能 RTC 500ms 喚醒功能
		0: 禁能 RTC 500ms 喚醒功能
3	LVD_WAKE	1: 致能低電壓偵測喚醒功能
		0: 禁能低電壓偵測喚醒功能
2-1	保留	-
0	IR_WAKE	1: 致能紅外線接收器喚醒功能
		0: 禁能紅外線接收器喚醒功能

-: 未能使用。

SYS 喚醒控制暫存器 1 WAKEUP_EN1 (外部記憶體位址: 0x21)

復代	"白巾"	00	н

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOA_WK[7:0]							

位元編號	位符號	說明
7-0	GPIOA_WK[7:0]	1: 致能 GPIOA PORT 引脚喚醒功能
		0: 禁能 GPIOA PORT 引脚喚醒功能

SYS 喚醒控制暫存器 2 WAKEUP_EN2 (外部記憶體位址: 0x22)

復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		GPIOB_WK[7:0]							

位元編號	位符號	說明				
7-0	GPIOB_WK[7:0]	1: 致能 GPIOB PORT 引脚喚醒功能				
		0: 禁能 GPIOB PORT 引脚喚醒功能				

WT51F516

內建可編程 Flash 8 位元微控制器

SYS 喚醒控制暫存器 3 WAKEUP_EN3 (外部記憶體位址: 0x23)

復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱		GPIOC_WK[7:0]						

位元編號	位符號	說明
7-0	GPIOC_WK[7:0]	1: 致能 GPIOC PORT 引脚喚醒功能
		0: 禁能 GPIOC PORT 引脚喚醒功能

SYS 喚醒觸發暫存器 0 WAKEUP_TOGGLE0 (外部記憶體位址: 0x24)

復位值: 00H

白	立元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
壯	犬態	讀	讀	讀	讀	讀	-	-	讀
彳	5稱	I2CPIN_TOG	WDT_EVT	ACOMP_TOG	RTC_500MS_TOG	LVD_EVT	保	留	IR_TOG

位元編號	位符號	說明
7	I2CPIN_TOG	1: I ² C 喚醒功能觸發旗標
6	WDT_EVT	1: 看門狗計數喚醒功能觸發旗標
5	ACOMP_TOG	1: 比較器喚醒功能觸發旗標
4	RTC_500MS_TOG	1: RTC 500ms 喚醒功能觸發旗標
3	LVD_EVT	1: 低電壓偵測喚醒功能觸發旗標
2-1	保留	-
0	IR_TOG	1: 紅外線接收器喚醒功能觸發旗標

-: 未能使用。

SYS 喚醒觸發暫存器 1 WAKEUP_TOGGLE1 (外部記憶體位址: 0x25)

復位值: 00H

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱				GPIOA_	TOG[7:0]			

位元編號	位符號	說明
7-0	GPIOA_TOG[7:0]	1: GPIOA PORT 引脚喚醒功能觸發旗標

SYS 喚醒觸發暫存器 2 WAKEUP_TOGGLE2 (外部記憶體位址: 0x26)

復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	擅	讀	讀	讀
名稱				GPIOB_	TOG[7:0]			

位元編號	位符號	說明
7-0	GPIOB_TOG[7:0]	1: GPIOB PORT 引脚喚醒功能觸發旗標

WT51F516

內建可編程 Flash 8 位元微控制器

SYS 喚醒觸發暫存器 3 WAKEUP_TOGGLE3 (外部記憶體位址: 0x27)

復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱				GPIOC_	TOG[7:0]			

位元編號	位符號	說明
7-0	GPIOC_TOG[7:0]	1: GPIOC PORT 引脚喚醒功能觸發旗標

SYS 觸發清除控制暫存器 WAKEUP_CLR (外部記憶體位址: 0x28)

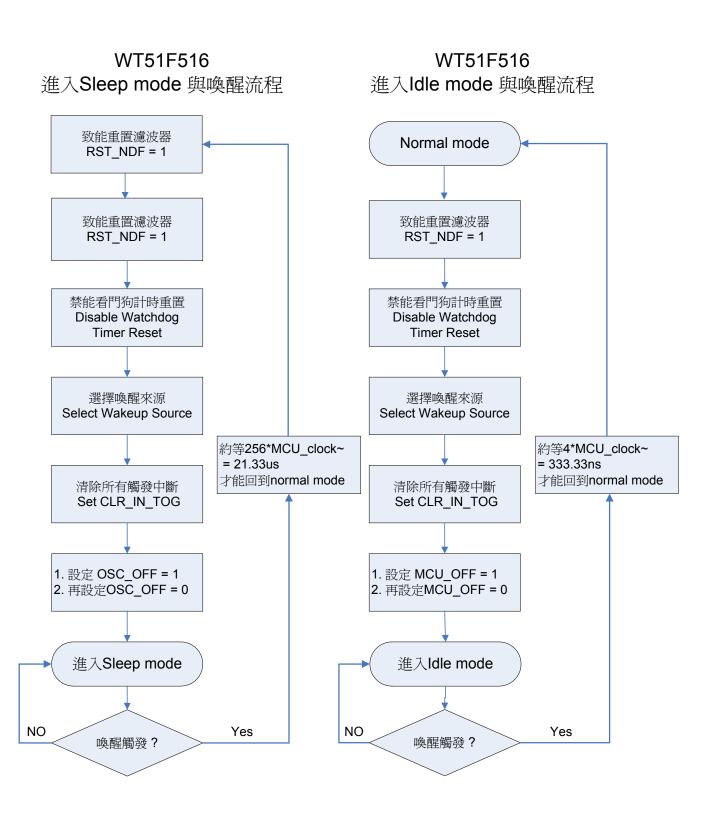
復位值: 00H

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位
狀態	寫	-	-	-	-	-	-	讀
名稱	CLR_IN_TOG		保留				IN_TOG	

位元編號	位符號	說明
7	CLR_IN_TOG	1: 清除所有觸發旗標
6-1	保留	-
0	IN_TOG	1: 所有觸發旗標

^{-:} 未能使用。


SYS 增強型計時/計數器喚醒控制暫存器 WAKEUP_ETM (外部記憶體位址: 0x29)


復位值: 00H

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	讀/寫	-	-	-	讀
名稱		保留		ETM_WAKE		保留		ETM_TOG

位元編號	位符號	說明
7-5	保留	-
4	ETM_WAKE	1: 致能增強型計數器喚醒功能
3-1	保留	-
0	ETM_TOG	1: 增強型計數器觸發旗標

^{-:} 未能使用。

內建可編程 Flash 8 位元微控制器

進入睡眠模式設定方式與喚醒的流程:

- (a) OSC_OFF 喚醒來源包含 I²C、WDT、ACOMP、RTC、LVD、GPIOA、GPIOB 和 GPIOC; 睡眠程序:
 - (1) 設定 RST NDFILT = 1
 - (2) 禁能看門狗計時器重置
 - (3) 選擇喚醒來源
 - (4) 設定 CLR_IN_TOG 清除中斷旗標
 - (5) 設定 OSC_OFF = 1, 再設定 OSC_OFF = 0
 - (6) 進入睡眠模式,等待喚醒觸發
 - (7) 信號觸發後, MCU 需等待 256* MCU_clock 時間才能正常工作

如果 XTAL clock 是 12 MHz, 則需等待 21.33us

進入閒置模式設定方式與喚醒的流程:

- (b) MCU_OFF 喚醒來源包含 I²C、WDT、ACOMP、RTC、LVD、IR、GPIOA、GPIOB、GPIOC 和 Enhanced Timer; 睡眠程序:
 - (1) 設定 RST_NDFILT = 1
 - (2) 禁能看門狗計時器重置
 - (3) 選擇喚醒來源
 - (4) 設定 CLR_IN_TOG
 - (5) 設定 MCU_OFF = 1, 再設定 MCU_OFF = 0
 - (6) 進入睡眠模式,等待喚醒觸發
 - (7) 信號觸發後, MCU 需等待 4*MCU clock 時間才能正常工作

如果 XTAL clock 是 12 MHz, 則需等待 333.33 ns

RTC_500MS_WAKE: 喚醒時間選擇需設定暫存器 RTC_FS[2:0] (index BE-bit 2:0) 任何睡眠模式都可以使用 RTC_500ms 喚醒

RTC_FS[2:0]	Wake up time
000	No
001	2s
010	500ms
011	62.5ms
100	7.8125ms
101	0.9765625ms
110	488.28125us
111	15.2587890625us

WT51F516

內建可編程 Flash 8 位元微控制器

6.8 12 MHz RC 振盪器校正

WT51F516 內建 12 MHz RC 振盪器,可減少外掛石英晶體振盪器的成本,但如果要較精確的系統時鐘,可使用 32.768 kHz (石英晶體振盪器) 來校正內部 RC 12 MHz 振盪器,也是一種較佳的選擇 (校正可以達到 \pm 1% 在-40°C 至 +85°C)。

內部振盪計數數據高位元組暫存器 RC_CAL [9:2] (外部記憶體位址: 0x2A)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱		RC_CAL [9:2]						

位元編號	位符號	說明
7-0	RC_CAL[9:2]	內部 12 MHz RC 振盪器的計數值 RC_CAL [9:2], 搭配 RC_CAL [1:0]組成 10 位元計數值

內部振盪計數數據低位元組暫存器 RC_CAL [1:0] (外部記憶體位址: 0x2B)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀	讀
名稱				RC_CA	AL [1:0]			

位元編號	位符號	說明
7-2	保留	-
1-0	RC_CAL [1:0]	內部 12 MHz RC 振盪器的計數值 RC_CAL [1:0], 搭配 RC_CAL [9:2]組成 10 位元計數值

-: 未能使用。

內部振盪校正控制暫存器 RC_IADJ (外部記憶體位址: 0x2C)

復位值: 40h

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
Ī	名稱	保留	RC_IADJ_C[2:0]			RC_IADJ_F[3:0]			

位元編號	位符號	說明
7	保留	-
6-4	RC_IADJ_C[2:0]	內部 RC 振盪頻率每一階 8%粗調(預設值'100h'),共有 8 階
3-0	RC_IADJ_F[3:0]	內部 RC 振盪頻率每一階 0.5%細調(預設值'0000h'),共有 16 階

-: 未能使用。

註:內部振盪調整暫存器 RC_IADJ_C[2:0]及 RC_IADJ_F[3:0]直接調整 IRC 12 MHz 的控制電路。

WT51F516

內建可編程 Flash 8 位元微控制器

校正原理:

當外部採用 32.768 kHz 振盪器,可利用內部 RC 12 MHz 在一個精準的 32.768 kHz 的固定寬度計數個數,所得到的計數值,再經由控制內部振盪調整暫存器 RC_IADJ_C[2:0]及 RC_IADJ_F[3:0]去作補償,達到 ±1%的標準。

校正粗調及細調的範圍:

粗調:目前內部 RC 頻率 ± (內部 RC 頻率 * 0.08); RC_IADJ_C[2:0]共有 000h ~ 111h,中間値為 100h。 細調:目前內部 RC 頻率 ± (內部 RC 頻率 * 0.005); RC_IADJ_F[3:0]共有 0000h ~ 1111h,中間値為 1000h。

RC_CAL[9:0]	外掛 32.768 kHz 取樣 (Hz)	目標値 (Hz)	誤差%
360	11796480	12000000	+1.70
361	11829248	12000000	+1.42
362	11862016	12000000	+1.15
363	11894784	12000000	+0.88
364	11927552	12000000	+0.60
365	11960320	12000000	+0.33
366	11993088	12000000	+0.06
367	12025856	12000000	-0.22
368	12058624	12000000	-0.49
369	12091392	12000000	-0.76
370	12124160	12000000	-1.03

註:

- 1. WT51F516 從睡眠中被喚醒時,RC 振盪器校正功能至少需要等待83.3ns (在12 MHz),才可以正常工作。
- 2. 當致能 RC 振盪器校正功能後,必須讀取 RC_CAL [9:2]及 RC_CAL [1:0]暫存器 2 次,並且確認數據相同才可進行校正。
- 3. 當 RC_CAL [9:0] 內部振盪計數數據暫存器為 511(0x1FF),表示沒有外部振盪器或是沒有致能外部振盪器。
- 4. 當系統復位時,WT51F516 會自動載入 RC 12 MHz 振盪器的校正值到內部振盪調整暫存器。

內建可編程 Flash 8 位元微控制器

6.9 看門狗定時器 (WDT)

看門狗定時器可迅速發現 CPU 的故障,比如由噪聲或、電源干擾,或斷電等導致軟件死循環,進而使 CPU 恢復正常狀態。當看門狗定時器的內部計數器溢出時會產生復位訊號,並將 CPU 復位。

看門狗定時器不同於通用的 8052 的計時器 0/1/2, 為了防止看門狗定時器產生復位,可以通過軟體定時清除看門狗計數器。當不可預料的復位發生時,用戶應該檢查復位旗標暫存器的 WDT_RST_EVT 位元,來判斷上次是否是由看門狗產生的復位。

- ▶ 看門狗定時器的時鐘來源: 內部 RC 12 MHz 或 內部 RC 128 kHz
- ▶ 重置時間: 32.77ms、65.54ms、1.05S、2.10S、8.23S

看門狗定時控制暫存器 0 WDT_CTL0 (外部記憶體位址: 0x08)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	-	-	-	-	-	讀
名稱	DIS_WDT	WDT_CLK_SEL		保留				WDT_RST_EVT

位元編號	位符號	說明
7	DIS_WDT	看門狗定時器開關
		1: 禁能看門狗定時器同時清除計數
		0: 致能看門狗定時器
6	WDT_CLK_SEL	看門狗時鐘來源選擇
		1: 看門狗定時器使用內部 12 MHz RC 振盪器
		0: 看門狗定時器使用內部 128 kHz RC 振盪器
5-1	保留	-
0	WDT_RST_EVT	1: 復位的來源是看門狗
		此位元如果 RESET 會由 H/W 設定為 1,F/W 設定 DIS_WDT 為 1 會將此位
		元清除爲 0

-: 未能使用。

注意:

- 1. 內部 12 MHz/32K RC 振盪器的頻率誤差請參考電氣特性章節說明
- 2. 設定 DIS_WDT 位元會清除 WDT_DET_EVT 位元, WDT 重新設定時間

看門狗定時控制暫存器 1 WDT_CTL1 (外部記憶體位址: 0x09)

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	讀/寫	讀/寫	讀/寫
名稱			保留	V	/DT_RST[2:	0]		

位元編號	位符號	說明
7-3	保留	-

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
2-0	WDT_RST[2:0]	看門狗復位時間設定
		當看門狗使用內部 RC 12 MHz 振盪器:
		000: 1.05s
		001: 2.10s
		010: 32.77ms
		100: 65.54ms
		1XX: 8.23s
		當看門狗使用內部 RC 128 kHz 振盪器:
		000: 1.02s
		001: 2.05s
		010: 32.0ms
		100: 64.0ms
		1XX: 8.13s

^{-:} 未能使用。

看門狗定時控制暫存器 2 WDT_CTL2 (外部記憶體位址: 0x0A)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	讀/寫	讀/寫	讀/寫
名稱	保留					WDT_DET[2:0]		

位元編號	位符號	說明
7-3	保留	-
2-0	WDT_DET[2:0]	看門狗喚醒時間設定
		當看門狗使用內部 RC 12 MHz 振盪器:
		000: 1.05s
		001: 2.10s
		010: 32.77ms
		100: 65.54ms
		1XX: 5.24s
		當看門狗使用內部 RC 128 kHz 振盪器:
		000: 1.02s
		001: 2.05s
		010: 32.0ms
		100: 64.0ms
		1XX: 5.12s

-: 未能使用。

內建可編程 Flash 8 位元微控制器

6.10 消費性電子控制 (HDMI CEC)

消費性電子控制(CEC)是 HDMI 規範中的一種可選擇的規範,它可以簡化數位家庭的操作,例如用遙控器可以控制所有支援 HDMI-CEC 的數位產品,現在市面上有很多不同品牌都可以看到 CEC,只是每個品牌都會給它一個不同的名稱,如 Samsung 的 Anynet+,LG 的 SIMPLINK,Panasonic 的 VIERA Link,Sony 的 BRAVIA SYNC,Sharp 的 Fami Link 等,都是借著 CEC 信號讓使用者可控制 HDMI 介面上所連接數位產品。

MCU 硬體會將 CEC 資料存放於緩衝暫存器中(1 byte),透過軟體讀取或寫入緩衝暫存器,實現收送整個封包的 CEC 格式並除錯,方便使用者定義客製化的 CEC 平台。

CEC 控制暫存器 (外部記憶體位址: 0x70)

復位值: 00h

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	讀/寫	-	-	讀	寫	寫	-	-
ſ	名稱	EN_CEC	保	留:	CEC_BUSY	CEC_L_4800US	CEC_L_3600US	保	留

位元編號	位符號	說明
7	EN_CEC	CEC 開關
		1: 致能 HDMI-CEC
		0: 禁能 HDMI-CEC
6-5	保留	-
4	CEC_BUSY	CEC 是否處於忙碌狀態
		1: CEC 忙碌,代表有訊號在傳送
		0: CEC 非忙碌,代表現在無訊號在傳送
3	CEC_L_4800US	1: 強制 CEC 產生一個 4.8ms 的低信號,會自動清除爲 0
		0: 禁能 CEC 產生一個 4.8ms 的低信號
2	CEC_L_3600US	1: 強制 CEC 產生一個 3.6ms 的低信號,會自動清除為 0
		0: 禁能 CEC 產生一個 3.6ms 的低信號
1-0	保留	-

^{-:} 未能使用。

CEC 啓動裝置暫存器 (外部記憶體位址: 0x71)

復位值: 10h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀	-	-	-	-	-
名稱	CEC_TR	CEC_O_EOM	CEC_RXACK			保留		

位元編號	位符號	說明
7	CEC_TR	1: 設定成啓動裝置,並且開始傳送 CEC 信號
		0: 設定成從者端,可接收 CEC 信號
6	CEC_O_EOM	1: 傳送 EOM 位元為 1,代表已傳送完成
		0: 傳送 EOM 位元為 0,代表後面還有資料要傳送
5	CEC_RXACK	接收到ACK位元的狀態
		1:接收到 NACK
		0: 接收到 ACK
4-0	保留	-

內建可編程 Flash 8 位元微控制器

-: 未能使用。

CEC 從者端暫存器 (外部記憶體位址: 0x72)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀/寫	讀/寫	-	-	-	-
名稱	CEC_I_STR	CEC_I_EOM	CEC_TXACK	CEC_NACK_INT		保	留	

位元編號	位符號	說明
7	CEC_I_STR	1: 接收到 CEC 的開始位元
		0: 未接收到 CEC 的開始位元
6	CEC_I_EOM	1:接收到 EOM 位元的值爲 1
		0:接收到 EOM 位元的值為 0
5	CEC_TXACK	1: 傳送 ACK 位元的值 1,即為 NACK
		0: 傳送 ACK 位元的值 0, 即為 ACK
4	CEC_NACK_INT	1: 致能當傳送 NACK,則下一個 CEC 信號進來也會產生 CEC_RX_INT 的
		中斷
		0: 禁能當傳送 NACK,則下一個 CEC 信號進來也會產生 CEC_RX_INT 的
		中斷
3-0	保留	-

-: 未能使用。

CEC 中斷控制暫存器 (外部記憶體位址: 0x73)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	-	-
名稱	CEC_INT	CEC_TX_INT	CEC_RX_INT	CEC_DLOSS	CEC_TM_OUT	CEC_LINE_ERROR	保	留

位元編號	位符號	說明
7	CEC_INT	1: 有任何的 CEC 中斷
		0: 未發生 CEC 中斷
6	CEC_TX_INT	1: 傳送完資料而產生中斷事件 (傳送完一個 CEC 位元組後)
		0: 未發生傳送中斷
5	CEC_RX_INT	1:接收資料而產生中斷事件 (接收一個 CEC 位元組後)
		0: 未發生接收中斷
4	CEC_DLOSS	1: 傳送資料時,因和其它 CEC 信號同時傳送,而發生資料遺失而產生中
		斷事件
		0: 未發生傳送資料遺失的中斷
3	CEC_TM_OUT	1:接收資料時,只有接收到某個位元,並無接收完整位元組,而產生中斷
		事件 (某個位元已超過 6.144ms 的時間)
		0: 未發生中斷
2	CEC_LINE_ERROR	1:接收資料時,接收到錯誤的位元,而產生中斷事件 (位元寬度小於
		1.9ms)
		0: 未發生中斷
1-0	保留	-

-: 未能使用。

WT51F516

內建可編程 Flash 8 位元微控制器

CEC 清除中斷暫存器 (外部記憶體位址: 0x74)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	寫	寫	寫	寫	寫	-	-
名稱	保留	CLR_TX_INT	CLR_RX_INT	CLR_DLOSS	CLR_TM_OUT	CLR_LINE_ERROR	保	留

位元編號	位符號	說明
7	保留	-
6	CLR_TX_INT	1: 清除傳送完資料而產生中斷的事件
		0: 無動作
5	CLR_RX_INT	1: 清除接收資料而產生中斷的事件
		0: 無動作
4	CLR_DLOSS	1: 清除傳送資料時,因和其它 CEC 信號同時傳送,而發生資料遺失而產
		生中斷的事件
		0: 無動作
3	CLR_TM_OUT	1: 清除接收資料時,只有接收到某個位元,並無接收完整位元組,而產生
		中斷的事件
		0: 無動作
2	CLR_LINE_ERROR	1: 清除接收資料時,接收到錯誤的位元,而產生中斷的事件
		0: 無動作
1-0	保留	-

-: 未能使用。

- 1. 清除中斷事件,需寫入1
- 2. 如果 CEC_DLOSS == 1
- (a) Initiator 狀態會變成 IDLE,並且 CEC_TR = 0。
- (b) Initiator 若要傳送下一筆 CEC 信息封包,需要去等"signal free time"(參考 HDMI 規格書)並且重新設定 CEC_TR
- 3. 如果 CEC_LINE_ERROR == 1 或是 CEC_TM_OUT == 1 需要去設定 CEC L4800US = 1

CEC 傳送緩衝暫存器 (外部記憶體位址: 0x75)

復位値: FFh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				CEC_D				

位元編號	位符號	說明
7-0	CEC_DTX[7:0]	CEC 傳送緩衝暫存器

CEC 接收緩衝暫存器 (外部記憶體位址: 0x76)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱	CEC_DRX[7:0]							

位元編號	位符號	說明			
7-0	CEC_DRX[7:0]	CEC 接收緩衝暫存器			

內建可編程 Flash 8 位元微控制器

6.11 實時時鐘模塊 (Real Time Clock)

RTC 在系統電源關閉的時候可以利用備份電池或靜電容工作,並向 MCU 傳送 8 位元的 BCD 碼資料,其所提供之時間數據有年、月、星期、日、時、分、秒等 7 種時間值資料,使用者可利用此萬年曆時鐘來做定時開關裝置。使用者可將想要設定的時間填入對應的暫存器中,只要開啟 RTC 功能就會自動計時,只需再把對應的暫存器中的數值讀取出來就可以知道現在的時間。

- 1. 如果 VDD_RTC 有外接靜電容,需等待 VDD_RTC 電源充電穩定後,MCU 才能讀取或寫入 RTC 時間,使用者可以將資料寫入後再讀取確認,如果一樣代表 RTC 已經正常工作
- 2. 使用 RTC 功能前, MCU 需設定 RTC RESET register 重置 RTC 模塊致能 RTC 流程:
 - 1. 設定 RTC RESET = 1 → 2. 設定 RTC RESET = 0 → 3. 設定 RTC EN = 1 致能 RTC 開始工作

RTC 控制暫存器 0 RTC_CTRL0 (外部記憶體位址: 0x38)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀/寫	讀/寫	讀/寫	-	-	-	寫
名稱	RTC_1S	RTC_CS	RTC_EN	RTC_RESET	保留CL		CLR_RTC_1S	

位元編號	位符號	說明
7	RTC_1S	1: RTC 1s 中斷旗標
6	RTC_CS	1: 致能 RTC 允許讀/寫
		0: 禁能 RTC 允許讀/寫
5	RTC_EN	1: 致能 RTC 允許讀取資料
		0: 禁能 RTC 允許讀取資料
4	RTC_RESET	1: RTC 重置
3-1	保留	-
0	CLR_RTC_1S	1: RTC 1s 中斷旗標清除

-: 未能使用。

RTC 秒數控制暫存器 RTC_SEC (外部記憶體位址: 0xB0)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留			F	RTC_SEC[6:0)]		

位元編號	位符號	說明
7	保留	-
6-0	RTC_SEC[6:0]	秒數用 BCD 碼表示,範圍 0~59

-: 未能使用。

RTC 分鐘數控制暫存器 RTC_MIN (外部記憶體位址: 0xB1)

復位値: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留		RTC_MIN[6:0]					

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號 位符號		說明
7	保留	-
6-0	RTC_MIN[6:0]	分鐘數用 BCD 碼表示,範圍 0~59

-: 未能使用。

RTC 時數控制暫存器 RTC_HOUR (外部記憶體位址: 0xB2)

侑	اربيا	洁∙	0	Nh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留		RTC_HOUR[5:0]					

位元編號	位符號	說明
7-6	保留	-
5-0	RTC_HOUR[5:0]	時數值用 BCD 碼表示,範圍 0 ~ 23

-: 未能使用。

RTC 日期控制暫存器 RTC_DAY (外部記憶體位址: 0xB3)

復位値: 01h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保	留	RTC_DAY[5:0]					

位元編號位符號		說明
7-6	保留	-
5-0	RTC_DAY[5:0]	日數值用 BCD 碼表示,範圍 1 ~ 31

^{-:} 未能使用。

RTC 星期控制暫存器 RTC_WEEK (外部記憶體位址: 0xB4)

循	付値・	00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	=	讀/寫	讀/寫	讀/寫
名稱	保留					R	C_WEEK[2	:0]

位元編號	位符號	說明
7-3	保留	-
2-0	RTC_WEEK[2:0]	000: 星期日
		001: 星期一
		010: 星期二
		011: 星期三
		100: 星期四
		101: 星期五
		110: 星期六

-: 未能使用。

WT51F516

內建可編程 Flash 8 位元微控制器

RTC 月份控制暫存器 RTC_MONTH (外部記憶體位址: 0xB5)

復位任	古•	Λ1	h
1月11/1	IB .	UΊ	n

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留				RTC_MONTH[3:0]			

位元編號	位符號	說明
7-4	保留	-
3-0	RTC_MONTH[3:0]	0000: 1 月
		0001: 2 月
		0010: 3 月
		0011: 4 月
		0100: 5 月
		0101: 6 月
		0110: 7 月
		0111: 8 月
		1000: 9 月
		1001: 10 月
		1011: 11 月
		1100: 12 月

-: 未能使用。

RTC 年控制暫存器 RTC_YEAR (外部記憶體位址: 0xB6)

復位值:	NΩ	h
129 11/ 110 .	vv	

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Γ	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
	名稱	RTC_YEAR[7:0]							

位元編號	位符號	說明
7-0	RTC_YEAR[7:0]	年值用 BCD 碼表示,範圍 0 ~ 99

RTC 備份控制暫存器 1 RTC_BAKUP1 (外部記憶體位址: 0xB8)

復	171	值:	n	٥h
.174	117.	ıı⇔.	·	•••

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				RTC_B	AKUP1			

位元編號	位符號	說明
7-0	RTC_BAKUP1	備份資料暫存器 1

RTC 備份控制暫存器 2 RTC_BAKUP2 (外部記憶體位址: 0xB9)

復	位4	值:	0	01	h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				RTC_B	AKUP2			

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-0	RTC_BAKUP2	備份資料暫存器 2

RTC 備份控制暫存器 3 RTC_BAKUP3 (外部記憶體位址: 0xBA)

<i>1</i> =	11. 1-		•	
7月	付布	ສ: ເ	JU	n

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Ī	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
	名稱				RTC_B	AKUP3			

位元編號	位符號	說明
7-0	RTC_BAKUP3	備份資料暫存器 3

RTC 備份控制暫存器 4 RTC_BAKUP4 (外部記憶體位址: 0xBB)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				RTC_B	AKUP4			

位元編號	位符號	說明
7-0	RTC_BAKUP4	備份資料暫存器 4

RTC 控制暫存器 1 RTC_CTRL1 (外部記憶體位址: 0xBC)

復位	/店・	00	h
125/11/	118.	vu	"

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	=	=	=	=	讀/寫	讀/寫	讀/寫	讀/寫
名稱						AMF	P[3:0]	

位元編號	位符號	說明
7-4	保留	-
3-0	AMP[3:0]	選擇調整 32.768 kHz 的放大電流

-: 未能使用。

RTC 控制暫存器 2 RTC_CTRL2 (外部記憶體位址: 0xBD)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				RTC_0	CA[7:0]			

位元編號	位符號	說明
7-0	RTC_CA[7:0]	校正位元

內建可編程 Flash 8 位元微控制器

RTC 控制暫存器 3 RTC_CTRL3 (外部記憶體位址: 0xBE)

復位值: 81h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	RTC_PDOSC	RTC_STOP	· · · · · · · · · · · · · · · · · · ·		RTC_PDOSCSU		RTC_FS[2:	0]

位元編號	位符號	說明					
7	RTC_PDOSC	1: 禁能 32.768 kHz 振盪器					
		0: 致能 32.768 kHz 振盪器					
6	RTC_STOP	1: 禁能 RTC					
		0: 致能 RTC					
5-4	保留	-					
3	RTC_PDOSCSU	1: 關閉 32.768 kHz 起始振盪電路					
2-0	RTC_FS[2:0]	輸出頻率					
		000: no output					
		001: 0.25 Hz					
		010: 1 Hz					
		011: 8 Hz					
		100: 64 Hz					
		101: 512 Hz					
		110: 1024 Hz					
		111: 32768 Hz					

-: 未能使用。

RTC 控制暫存器 4 RTC_CTRL4 (外部記憶體位址: 0xBF)

復位値: 62h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	-	-	讀/寫	讀/寫
名稱	RX[3:0]				保	留	DRV2(*2)	DRV1

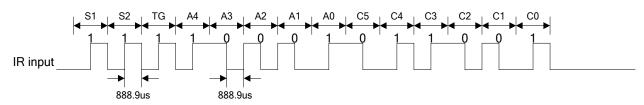
位元編號	位符號	說明
7-4	RX[3:0]	Bias 電阻設定
		0000: Don't use
		0001: 300k
		0010: 350K
		0011: 400K
		0100: 450K
		0101: 500K
		0110: 550K
		0111: 600K
		1000: 650K
		1001: 700K
		11XX: 750K
3-2	保留	-
1	DRV2	振盪器電流控制
		1: 擴大電流

內建可編程 Flash 8 位元微控制器

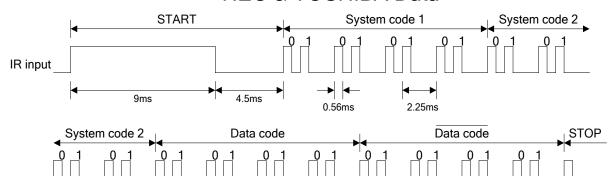
位元編號	位符號	說明			
0	DRV1	振盪器驅動放大控制 1: 放大驅動能力			

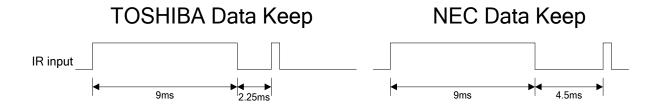
-: 未能使用。

- (1) 當振盪穩定後,MCU 可以設定 RTC_PDOSCSU = 1 減少功耗
- (2) 設定 DRV2 = 1,可以加速起振,當振盪穩定後,MCU 可以設定 DRV2 = 0 減少功耗



6.12 紅外線接收器 (Infra Red)


紅外線是一種常見的無線通訊,普遍使用在家電產品上,如電視、音響、錄放影機、冷氣機、DVD....等。在 Serial 通訊中常會提到 mark 和 space 狀態。space 是紅外線的預設訊號,Transmitter 處於 off 狀態,這時 IR LED 不會發射光亮;而在 mark 狀態 IR LED 會以特定的頻率送出 on/off 脈衝(Pulse)。消費電子一般使用 30 kHz 到 60 kHz 的頻率。目前 IR Protocol 有相當多種,如 NEC、RC5、RC6、Toshiba、Sharp.....等,接收到的波形如下圖。


當 IR receiver 收到 IR 信號解調後,MCU 可設定內部計數時間,並透過 F/W 計算出每一個上升下降緣的間隔時間,利用此方式可以解出符合各廠商訂出的 IR 格式。

PHILIPS RC5

NEC & TOSHIBA Data

IR Timing Table

		STARTH	STARTL	pulse	H period	L period
TC9290	data	9	4.5	0.56	2.25	1.125
(TC9243)	keep	9	4.5	0.56	2.25	
NEC uPD6P5	data	9	4.5	0.56	2.25	1.125
	keep	9	2.25	0.56		
Philips RC5	data	0.889	0.889	0.889	0.889	0.889

WT51F516

內建可編程 Flash 8 位元微控制器

紅外線控制暫存器 IR_EN0 (外部記憶體位址: 0x60)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	EN_IR	IR_SEDG	IR_RF	EN_OV_INT	PRE_SCAL[2:0]		CLR_IR_INT	

位元編號	位符號	說明						
7	EN_IR	1: 致能紅外線遙控						
		0: 禁能紅外線遙控						
6	IR_SEDG	外部中斷要求觸發設定						
		1: 雙邊觸發						
		0: 單邊觸發 (根據 IRQ_EDGE[3:0]設定正緣或負緣觸發)						
5	IR_RF	外部中斷要求觸發緣設定						
		1: 負緣觸發						
		0: 正緣觸發						
4	EN_OV_INT	1: 致能溢位中斷						
		0: 禁能溢位中斷						
3-1	PRE_SCAL[2:0]	紅外線遙控取樣時間設定						
		000: 1us						
		001: 8us						
		010: 32us						
		011: 64us						
		100: 128us						
		101: 256us						
		110: 512us						
		111: 1024us						
0	CLR_IR_INT	紅外線遙控中斷清除						
		1: 相對應位元寫 1 可清除此中斷狀態						
		0: 未動作						

紅外線中斷暫存器 IR_EN1 (外部記憶體位址: 0x61)

復位值: 04h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	讀	讀	讀
名稱		保留					IR_OVFLW	IR_INT

位元編號	位符號	說明
7-3	保留	-
2	IR_HL	IR 腳位輸入狀態
		1: 高準位
		0: 低準位
1	IR_OVFLW	1: IR 溢位中斷旗標
0	IR_INT	1: IR interrupt = edge trigger +over low
		0: 無中斷產生

-: 未能使用。

WT51F516

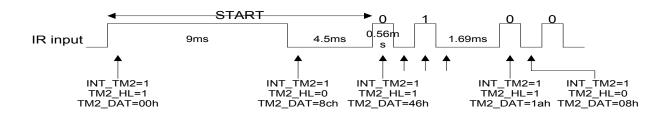
內建可編程 Flash 8 位元微控制器

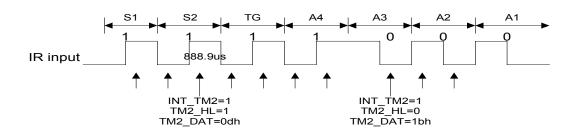
紅外線計數暫存器 IR_CNT2 (外部記憶體位址: 0x62)

復位化	古•	nnh
129/11/1	ш.	UUII

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱	IR_CNT[7:0]							

位元編號	位符號	說明
7-0	IR_CNT[7:0]	IR 計數值


紅外線數位濾波暫存器 IR_FILTER[3:0] (外部記憶體位址: 0x63)


復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留			IR_FILTER[3:0]				

位元編號	位符號	說明
7-4	保留	-
3-0	IR_FILTER[3:0]	IR數位濾波器
		= 0h: 2 X 84 ns = 168 ns 數位濾波
		= 1h: 1 X 32 us = 32 us 數位濾波
		= Fh: 15 X 32 us = 480 us 數位濾波

-: 未能使用。

內建可編程 Flash 8 位元微控制器

6.13 I2C 串行介面

 I^2C 模組使用 SCL(時鐘)和 SDA(數據)線來聯繫其它的 I^2C 介面,其傳輸速度可以由軟體設定特殊暫存器(XFR)中的 I^2C _CLK[1:0],從而使其高達到 400 KBpS (最大値)。

I²C 模組可以提供從機模式。

從機 I2C 控制暫存器 I2C_CTL (外部記憶體位址: 0xA0)

復位值: 00h

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	1	ı	讀/寫
Ī	名稱	SIIC_EN	EN_INT_RT	EN_INT_STOP	EN_INT_RSTR	SIIC_WAIT	保	留	SIIC_TXNAK

位元編號	位符號	說明
7	SIIC_EN	1: 致能 I ² C 功能
		0: 禁能 I ² C 功能
6	EN_INT_RT	1: 致能 I ² C 讀/寫位元
		0: 禁能 I ² C 讀/寫位元
5	EN_INT_STOP	1: 致能 I ² C 傳送停止位元
		0: 禁能 I ² C 傳送停止位元
4	EN_INT_RSTR	1: 致能 I ² C 傳送開始位元
		0: 禁能 I ² C 傳送開始位元
3	SIIC_WAIT	1: 致能 SCL 延長 (在第 9 個 SCL 後拉低 SCL 準位)
		0: 禁能 SCL 延長 (在第 9 個 SCL 後拉低 SCL 準位)
2-1	保留	-
0	SIIC_TXNAK	從機模式下在接收下筆資料前的應答位元
		1: 回覆 NACK
		0: 回覆 ACK

^{-:} 未能使用。

從機 I²C 中斷暫存器 I²C_INT (外部記憶體位址: 0xA1)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	保留			TX_INT_	NUM[1:0]	RX_INT_I	NUM[1:0]	

位元編號	位符號	說明	
7-4	保留	-	
3-2	TX_INT_NUM[1:0]	設定每次產生中斷的傳送位元組數量	
		00:1個位元組產生中斷	
		01:2個位元組產生中斷	
		10:4個位元組產生中斷	
		11:8 個位元組產生中斷	
1-0	RX_INT_NUM[1:0]	設定每次產生中斷的接收位元組數量	
		00:1個位元組產生中斷	
		01:2個位元組產生中斷	

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
		10:4個位元組產生中斷
		11:8個位元組產生中斷

-: 未能使用

從機 I²C 旗標清除暫存器 I²C_FLG_CLR[7:0] (外部記憶體位址: 0xA2)

ᄹᅜ	- 12	001
復位	II 🗆 .	oor

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	-	-	-	-	-
名稱	SIIC_CLR_RT	SIIC_CLR_STOP	SIIC_CLR_RSTR	保留				

位元編號	位符號	說明
7	SIIC_CLR_RT	1: 清除傳送及接收中斷
6	SIIC_CLR_STOP	1: 清除從機模式停止狀態中斷
5	SIIC_CLR_RSTR	1: 清除從機模式開始狀態中斷
4-0	保留	-

-: 未能使用。

從機 I°C 旗標暫存器 I°C_FLG[7:0] (外部記憶體位址: 0xA3)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	-	讀	讀	讀
名稱	SIIC_AL_RDY	SIIC_INT_RT	SIIC_INT_STOP	SIIC_INT_RSTR	保留	SIIC_FIRST	SII_ALRW	SII_RXNAK

位元編號	位符號	說明
7	SIIC_AL_RDY	1:接收/傳輸第9位元或從機模式接收到停止位元的中斷發生
6	SIIC_INT_RT	1:接收/傳輸第9位元中斷發生
5	SIIC_INT_STOP	1: 從機模式接收到停止位元中斷發生
4	SIIC_INT_RSTR	1: 從機模式接收到再開始位元中斷發生
3	保留	-
2	SIIC_FIRST	從機模式的接收第一個位元組狀態位
		這是第一個位元組從主機 I ² C 與特定從機位址
1	SII_ALRW	從機模式的讀/寫模式狀態位(第一個位元組的第8位元)
		1: 從機 I ² C 爲傳送模式
		0: 從機 I ² C 爲接收模式
0	SII_RXNAK	從機傳輸模式應答狀態位
		1: 主機回覆 NACK
		0: 主機回覆 ACK

從機 I²C 位址暫存器 I²C_SADR (外部記憶體位址: 0xA4)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	-	
名稱		SIIC_SADR[6:0]							

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-1	SIIC_SADR[6:0]	從機的位址
0	保留	-

-: 未能使用。

從機 I²C 索引清除控制暫存器 I²C_INDEX_CLR (外部記憶體位址: 0xA8)

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	-	-	-	-	-	-
名稱	CLR_IIC_TX_FIFO_INDEX	保留						

位元編號	位符號	說明
7	CLR_IIC_TX_FIFO_INDEX	清除 I ² C 傳送索引
6	CLR_IIC_RX_FIFO_INDEX	清除 I ² C 接收索引
5-0	保留	-

^{-:} 未能使用。

從機 I2C TX FIFO 控制暫存器 I2C_TXFIFO_INDEX (外部記憶體位址: 0xA9)

復位值: 80h

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
Ī	狀態	讀	-	-	-	讀	讀	讀	讀	
Ī	名稱	IIC_FIFO_TX_EMPTY	保留			IIC_FIFO_TX_INDEX[3:0]				

位元編號	位符號	說明
7	IIC_FIFO_TX_EMPTY	I ² C 傳送 FIFO 清空旗標
6-4	保留	-
3-0	IIC_FIFO_TX_INDEX[3:0]	I ² C 傳送 FIFO 索引值

^{-:} 未能使用。

從機 I²C RX FIFO 控制暫存器 I²C_RXFIFO_INDEX (外部記憶體位址: 0xAA)

復	إيا	古.	Λ	Λ	L
1月1	11/1	旧:	u	U	r

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	-	-	-	讀	讀	讀	讀
名稱	IIC_FIFO_RX_FULL	保留			ĮI.	C_FIFO_R	<_INDEX[3:	0]

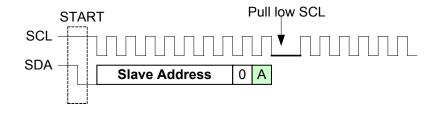
位元編號	位符號	說明
7	IIC_FIFO_RX_FULL	I ² C 接收 FIFO 塡滿旗標
6-4	保留	-
3-0	<pre>IIC_FIFO_RX_INDEX[3:0]</pre>	I ² C FIFO 索引值

^{-:} 未能使用。

從機 I²C 傳送接收緩衝資料暫存器 I²C_BUFF(外部記憶體位址: 0xAB)

復位位	古・	FFI	h

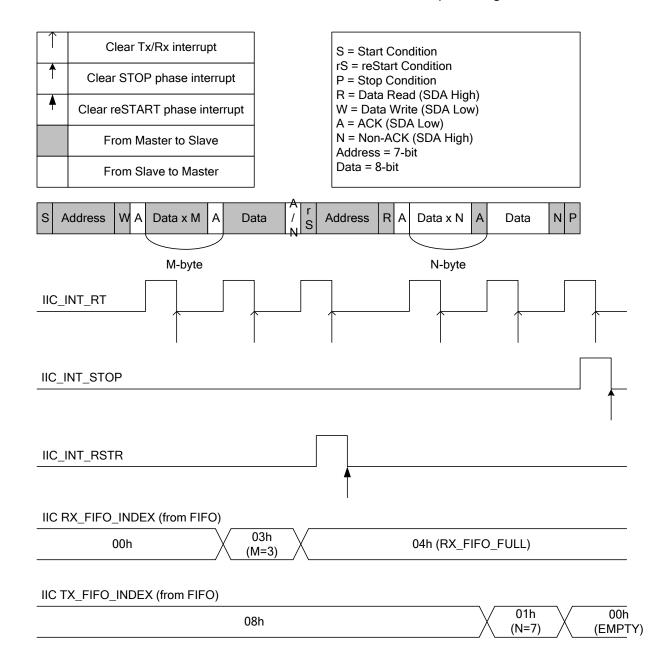
					_ ,				
位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位	
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	
名稱		IIC_FIFO_DAT[7:0]							

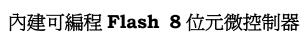


內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-0	IIC_FIFO_DAT[7:0]	R: 從 RX FIFO 讀取資料
		W: 寫入資料至 TX FIFO

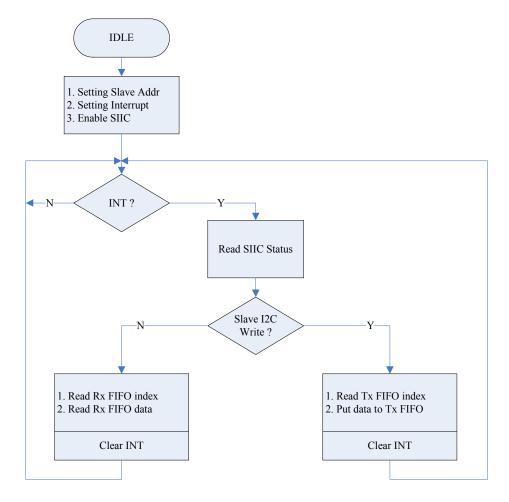
-: 未能使用


當韌體處理時間比 I^2C 接收 9 個位元的時間還慢時,韌體必須設定 MI^2C_WAIT ,使 WT51F516 在第 9 個 SCL 後 拉低準位,請主機等待它。



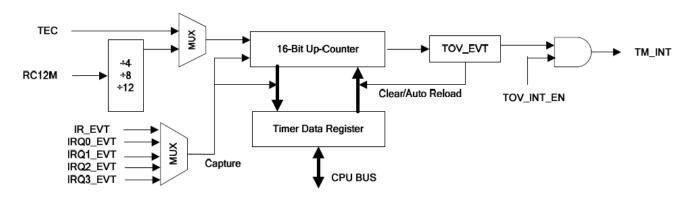
WT51F516 Slave I²C Interrupt Timing

WT51F516 Slave I²C with 8-FIFO Interrupt Timing



WT51F516 Slave I²C Flow Chart

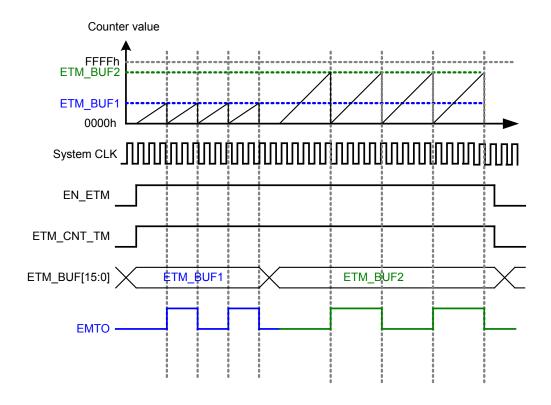
WT51F516 Slave I²C with 8-FIFO Flow Chart



內建可編程 Flash 8 位元微控制器

6.14 增強型計時/計數器 (Enhanced Timer/Counter)

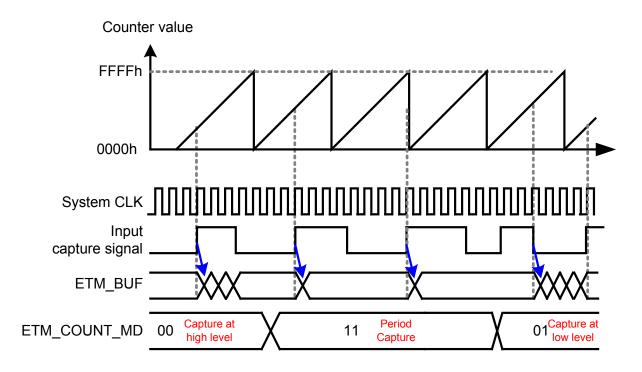
增強型計時/計數器的時鐘源有內部時鐘源或是由外部輸入,可由暫存器設定。


增強型計時/計數器主要可分 2 個模式: 1. 比較模式 2. 捕捉模式;且它也提供 3 種捕捉匹配條件的選擇: 高準位、低準位及週期的捕捉模式。

1. 比較模式:

增強型計時/計數器內部有一個 16 位元計數器及一個 16 位元增強型緩衝器(TCDR[15:0]),當致能增強型計時/計數器(TC_EN = 1)並且設定爲比較模式後(CAP_RL_SEL = 0),計時器會依據時鐘源進行計數,當計數器與增強型緩衝器的數據匹配時會產生中斷。每次的匹配會觸發中斷,且會自動清除內部 16 位元計數器的計數值,請參考下圖。

比較模式操作圖:



內建可編程 Flash 8 位元微控制器

2. 捕捉模式:

增強型計時/計數器設定為捕捉模式(CAP_RL_SEL = 1),然後致能增強型計時/計數器(TC_EN = 1),此時開始捕捉,當輸入端的狀態變化與所設定的捕捉條件匹配時,會清除內部 16 位元計數器並重新計數後,再將計數值自動載到 16 位元增強型緩衝器(TCDR[15:0]),此時軟件可由增強型計時/計數器數據緩衝暫存器(暫存器 82H 及 83H)讀取計數值,同時會產生捕捉中斷、捕捉旗標,請參考下圖。

捕捉模式操作圖:

增強型計時/計數器控制暫存器 1 ETM CTL1 (外部記憶體位址: 0x80)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	TC_EN	EXC_EN	TCC_SEL[1:0]		CAP_RL_SEL	CAP SEL[2:0]		0]

位元編號	位符號	說明
7	TC_EN	1: 致能增強型計時/計數器
6	EXC_EN	設定增強型計時/計數器時鐘源
		1: 外部時鐘源,可由 TEC(GPIOA0) 輸入時鐘源
		0: 內部時鐘源 (SOURCE clock)
5-4	TCC_SEL[1:0]	設定內部 16 位元計數器之時鐘源預除器
		00: 增強型計時/計數器時鐘源 = SOURCE clock
		01: 增強型計時/計數器時鐘源 = SOURCE clock / 4
		10: 增強型計時/計數器時鐘源 = SOURCE clock / 8
		11: 增強型計時/計數器時鐘源 = SOURCE clock / 12

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
3	CAP_RL_SEL	1: 捕捉模式 (Capture)
		0: 比較模式 (SOURCE clock = 12 MHz)
2-0	CAP_SEL[2:0]	設定增強型計時/計數器輸入的捕抓通道輸入來源
		= 1XX, IR 邊緣觸發
		= 000, IRQ0 觸發
		= 001, IRQ1 觸發
		= 010, IRQ2 觸發
		= 011, IRQ3 觸發

-: 未能使用。

增強型計時/計數器控制暫存器 2 ETM_CTL2 (外部記憶體位址: 0x81)

復位值: 00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	-	-	-	讀/寫	-	-	-
名稱	TCOV_INT_EN	保留		ETM_IN_PSCAL[1:0]	保留			

位元編號	位符號	說明
7	TCOV_INT_EN	1: 致能溢位旗標
6-4	保留	-
3	TCOV_EVT(1)	溢位旗標
		1: 當內部 16 位元計數器產生溢位時,TCOV_EVT = 1
2-0	保留	-

-: 未能使用。

增強型計時/計數器數據緩衝高位元組暫存器 ETM_BUF[15:8] (外部記憶體位址: 0x82)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				TCDR	R[15:8]			

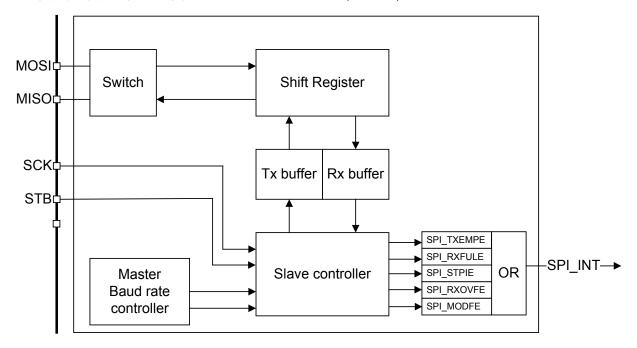
位元編號	位符號	說明
7-0	TCDR [15:8]	搭配 ETM_BUF[7:0],組成 16 位元計數值
		讀取: 在捕捉模式下,捕捉到輸入訊號的計數值
		寫入: 在比較模式下,作爲與內部 16 位元計數器的比較值

增強型計時/計數器數據緩衝低位元組暫存器 ETM_BUF[7:0] (外部記憶體位址: 0x83)

復位值: 00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	TCDR[7:0]							

位元編號	位符號	說明
7-0	TCDR [7:0]	搭配 ETM_BUF[15:8],組成 16 位元計數值 讀取:在捕捉模式下,捕捉到輸入訊號的計數值 寫入:在比較模式下,作爲與內部 16 位元計數器的比較值



內建可編程 Flash 8 位元微控制器

6.15 SPI 串行介面 (SPI)

SPI 是一個同步串行介面,允許主機和從機溝通,支援全雙工數據傳輸,及支援 3 線或 4 線訊號傳輸。

- ➤ SPI 支援: 主機及從機模式
- ▶ 傳送的串行數據可選擇 LSB 或 MSB 優先傳輸
- ▶ SPI 串行介面傳輸速度,頻率範圍: 2 MHz ~ 23.4375 kHz (Bit Rate)

SPI 通信使用 4 個引腳,分別為:

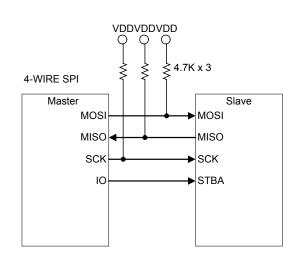
MOSI: 在主機模式中數據輸出; 在從機模式中數據輸入。 MISO: 在主機模式中數據輸入; 在從機模式中數據輸出。

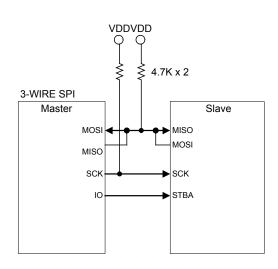
SCK: 在主機模式中時鐘輸出;從機模式時鐘輸入,達到數據同步。

STB: 在主機模式中爲輸出; 在從機模式中爲輸入。

主機模式下,當作致能從機的 I/O 端口:

STB = 0: 主機致能從機 STB = 1: 主機禁能從機


使用 SPI 串行介面, 須透過軟體設定 SPI 相關腳位爲輸出或輸入狀態, 如下圖所示:


4 線式 SPI	主機模式	從機模式	備註
MOSI (GPIOA5)	輸出 (Output)	輸入 (Input)	
MISO (GPIOC6)	輸入 (Input)	輸出 (Output)	
SCK (GPIOC7)	輸出 (Output)	輸入 (Input)	
STB (GPIOA4)	輸出 (Output)	輸入 (Input)	

內建可編程 Flash 8 位元微控制器

四線式及三線式 SPI 連結圖:

SPI 控制暫存器 1 SPI_CTL1 (外部記憶體位址: 0xC0)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	SPI_EN	SPI_MASTER	SPI_CPOL	SPI_CPHA	SPI_MODFEN	SPI_LSBFE	SPI_SPC	SPI_BIDIROE

位元編號	位符號	說明
7	SPI_EN	1: 致能 SPI 模組
		0: 禁能 SPI 模組
6	SPI_MASTER	SPI 主/從機模式選擇
		1: SPI 爲主機模式
		0: SPI 爲從機模式
5	SPI_CPOL	SPI 時脈極性位元選擇
		1: 時脈爲低電壓準位動作
		0: 時脈爲高電壓準位動作
4	SPI_CPHA	SPI 時脈相位位元選擇
		1: 在輸入的時鐘源偶數時取樣數據
		0: 在輸入的時鐘源奇數時取樣數據
3	SPI_MODFEN	1: 致能 SPI 故障模式 (只限從機模式)
		0: 禁能 SPI 故障模式 (只限從機模式)
2	SPI_LSBFE	起始位元選擇
		1: 數據起始爲最低有效位元
		0: 數據起始爲最高有效位元
1	SPI_SPC	SPI 串列腳控制設定 (3 線式)
		1: 致能 SPI 雙向傳輸設定
		0: 禁能 SPI 雙向傳輸設定
0	SPI_BIDIROE	當 SPI_SPC 設定爲 1 此 bit 才有作用 (3 線式)
		1: Slave: MISO 爲 Output (Slave 時 MOSI 無作用)
		Master: MOSI 爲 Output (Master 時 MISO 無作用)
		0: Slave: MISO 爲 Input (Slave 時 MOSI 無作用)

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
		Master: MOSI 爲 Input (Master 時 MISO 無作用)

Note:

模式	暫存器 SPI_CTL1[1]	暫存器 SPI_CTL1[0]	MISO 腳位狀態	MOSI 腳位狀態					
Pin Mode	SPC0	BIDIROE	MISO	MOSI					
	操作在主機模式								
Normal	0	X	Master 輸入	Master 輸出					
Didirectional	4	0	MICO 無佐田	Master 輸入					
Bidirectional	Į.	1	MISO 無作用	Master 輸入/輸出					
		操作在從機模式							
Normal	0	X	Slave 輸出	Slave In					
Bidirectional	1	0	Slave 輸入	MOSI 無作用					
Bidirectional	I	1	Slave 輸入/輸出	WIOSI 無作用					

SPI 中斷控制暫存器 SPI_INT (外部記憶體位址: 0xC1)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱	SPI_TXIE	SPI_RXIE	SPI_STPIE	保留	TX_INT_	NUM[1:0]	RX_INT_	NUM[1:0]

位元編號	位符號	說明
7	SPI_TXIE	1: 致能 SPI 傳送數據緩衝區資料所產生的中斷
6	SPI_RXIE	1: 致能 SPI 接收數據緩衝區資料所產生的中斷
5	SPI_STPIE	1: 致能 SPI 傳輸序列完成中斷旗標
4	保留	-
3-2	TX_INT_NUM[1:0]	設定每傳送 n 個 byte 產生中斷
		00: 1-byte 產生中斷
		01: 2-byte 產生中斷
		10: 4-byte 產生中斷
		11: 8-byte 產生中斷
1-0	RX_INT_NUM[1:0]	設定每接收 n 個 byte 產生中斷
		00: 1-byte 產生中斷
		01: 2-byte 產生中斷
		10: 4-byte 產生中斷
		11: 8-byte 產生中斷

-: 未能使用。

SPI 中斷清除暫存器 SPI_CLR (外部記憶體位址: 0xC2)

復位值: 0x00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	寫	寫	寫	-	-	-	-	-
名稱	CLR_TXIF	CLR_RXIF	CLR_STPIF	保留				

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7	CLR_TXIF	1: 清除 SPI 傳輸中斷旗標
6	CLR_RXIF	1: 清除 SPI 接收中斷旗標
5	CLR_STPIF	1: 清除 SPI 序列完成中斷旗標
4-0	保留	-

-: 未能使用。

SPI 旗標暫存器 SPI_FLG (外部記憶體位址: 0xC3)

復位値	٠ (١v٢	ገበዞ	1
12971/71日		ノスリ	JUI	ı

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位
狀態	讀	讀	讀	讀	-	-	-	-
名稱	SPI_TXIF	SPI RXIF	SPI STPIF	SPI MODF	保留			

位元編號	位符號	說明
7	SPI_TXIF	SPI 傳輸數據緩衝器狀態旗標*1
		1: SPI 傳輸緩衝器已完成
6	SPI_RXIF	SPI 接收數據緩衝器狀態旗標
		1: SPI 接收緩衝器已完成
5	SPI_STPIF	SPI 傳輸/接收數據完成狀態旗標 (SS pin goes high)
		1: SPI 傳輸/接收完成
4	SPI_MODF	SPI 模式故障狀態旗標 (只限從機模式)*3
		1: SPI 模式故障
3-0	保留	-

-: 未能使用。

SPI 速度設定暫存器 SPI_BRS[7:0] (外部記憶體位址: 0xC4)

作品值 :	$\Lambda_{V}\Lambda\Lambda h$

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	SPI_BRS[7:0]							

位元編號	位符號	說明
7-0	SPI_BRS[7:0]	SPI 位速率選擇 (SPI 最高速度 = 2M) SPI Bit Rate = SCLK / (SPI_BRS[7:0]+1) x 2 如果 mcu_clk = 12 MHz BRS[7:0] = 0: SPI speed = 12 MHz/(255+1) x 2 = 23.4375 kHz BRS[7:0] = 1: SPI speed = 12 MHz/(255+1) x 2 = 23.4375 kHz BRS[7:0] = 2: SPI speed = 12 MHz/(2+1) x 2 = 2 MHz BRS[7:0] = 3: SPI speed = 12 MHz/(3+1) x 2 = 1.5 MHz

WT51F516

內建可編程 Flash 8 位元微控制器

SPI FIFO 控制暫存器 SPI_FIFO (外部記憶體位址: 0xC8)

復位值: 0x00h

_	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	讀/寫	讀/寫	-	1	-	-	-	-
	名稱	CLR_SPI_TXFIFO_INDEX	CLR_SPI_RXFIFO_INDEX			保	留		

位元編號	位符號	說明
7	CLR_SPI_TXFIFO_INDEX	1: 清除 SPI 傳輸數據緩衝器索引
6	CLR_SPI_RXFIFO_INDEX	1: 清除 SPI 接收數據緩衝器索引
5-0	保留	-

^{-:} 未能使用。

SPI FIFO 傳送狀態暫存器 SPI_TX_FIFO (外部記憶體位址: 0xC9)

復位值: 0x80h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	温	-	-	-	讀	讀	讀	讀
名稱	SPI_FIFO_TX_EMPTY	保留			SI	PI_FIFO_T	C_INDEX[3:	0]

位元編號	位符號	說明					
7	SPI_FIFO_TX_EMPTY	SPI 傳輸數據緩衝器清空狀態旗標*1					
		1: SPI 傳輸緩衝器已清空					
6-4	保留	-					
3-0	SPI_FIFO_TX_INDEX[3:0]	SPI 傳輸數據緩衝器索引值					

-: 未能使用。

SPI FIFO 接收狀態暫存器 SPI_RX_FIFO (外部記憶體位址: 0xCA)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	-	-	-	讀	讀	讀	讀
名稱	SPI_FIFO_RX_FULL 保留 SPI_FIFO_RX_INDEX[3:0]				0]			

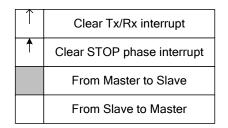
位元編號	位符號	說明
7	SPI_FIFO_RX_FULL	SPI 接收數據緩衝器塡滿狀態旗標 1: SPI 接收緩衝器已經塡滿
6-4	保留	-
3-0	SPI_FIFO_TX_INDEX[3:0]	SPI 接收數據緩衝器索引值

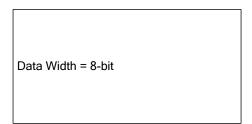
-: 未能使用。

SPI 傳送接收緩衝暫存器 SPI_DAT[7:0] (外部記憶體位址: 0xCB)

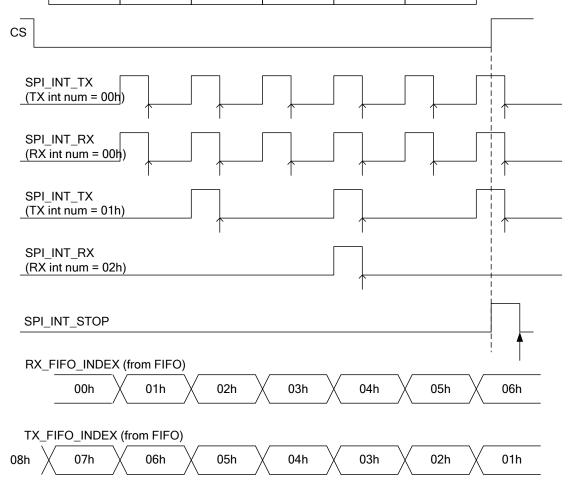
復	171	演∙	Ωx	F	Fh
.174			\mathbf{v}		

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
Γ	名稱			_	FIFO_D	AT[7:0]		_	_

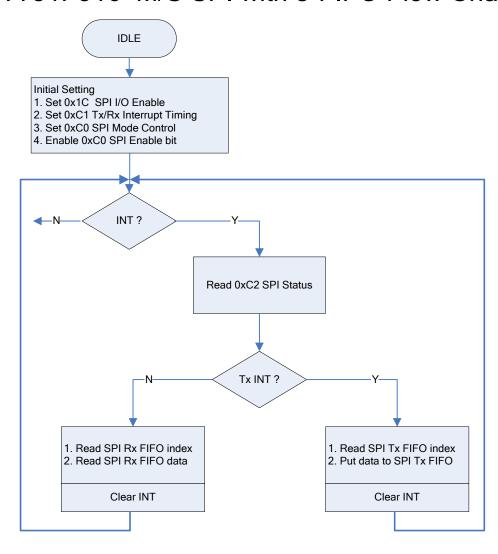




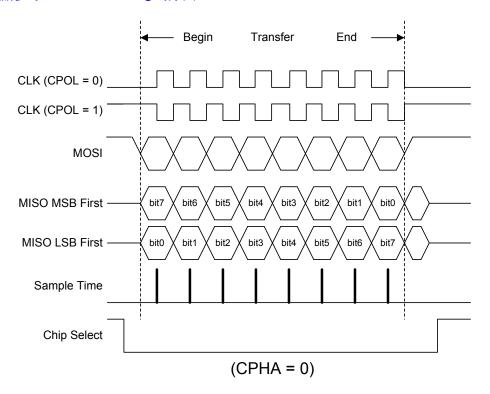
內建可編程 Flash 8 位元微控制器

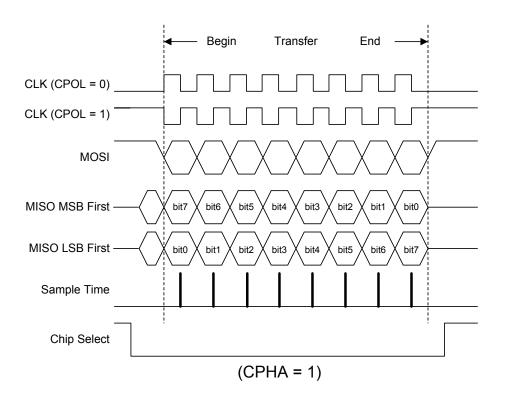

位元編號	位符號	說明
7-0	FIFO_DAT[7:0]	讀取: 從 SPI RX FIFO 讀取資料
		寫入: 寫入資料至 SPI TX FIFO

WT51F516 SPI with 8-FIFO Interrupt Timing

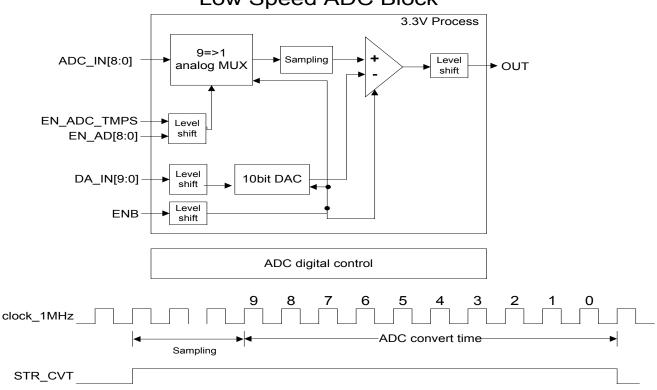


MOSI	MOSI Byte1 Byte2		Byte3	Byte4	Byte5	Byte6
MISO	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6




WT51F516 M/S SPI with 8-FIFO Flow Chart

傳送與接收方式請參考 SPI Mode Timing 時序圖



內建可編程 Flash 8 位元微控制器

6.16 模/數轉換器 (ADC)

WT51F516 內建 8 通道 10 位元模/數轉換器,提供 2 種轉換模式 (單一、電壓比較) 與 4 種轉換速率 (1 MHz、250 kHz、62.5 kHz、15.625 kHz) 的選擇。

Low Speed ADC Block

單一轉換模式 (Single Mode):

首先要開啟模/數轉換器電源 (ADC控制暫存器中PD_LADC = 0),並且把模/數轉換器控制暫存器STR_CVT = 1 開始轉換; STR_CVT = 0 轉換結束,每一個頻道轉換時間約16us。

電壓比較模式 (Comparator Mode):

當開啓模/數轉換器電源(ADC 控制暫存器中 PD_LADC = 0),且啟動比較功能(模/數轉換器控制暫存器中 EN_ADC_WK = 1)時,可以對模擬輸入(ADC_IN)進行 AD 轉換並與電壓比較數據暫存器(ADC_WK_V)中的數據比較。當相應的電壓模擬輸入的數位值大於(ADC_BIG = 0)或小於(ADC_BIG = 1)模/數轉換器電壓比較數據暫存器(ADC_WK_V)中的設定值時,會產生模/數轉換器中斷,模/數轉換器集成數位電壓比較功能,能在睡眠模式下工作,並且可以將 WT51F516 喚醒。

模/數轉換器控制暫存器 ADC_CTL (外部記憶體位址: 0xD0)

復位值: 0x80h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱	PD_LADC	STR_CVT	ADC_BIG	EN_ADC_WK	SLT_FLT_CVT	RDNOISE	ADC_C	LK_SEL

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7	PD_LADC	模/數轉換器電源控制
		1: 關閉模/數轉換器電源
		0: 開啓模/數轉換器電源
6	STR_CVT	模/數轉換器開始轉換位元(單一轉換模式)
		1: 開始轉換
		1 => 0: 轉換完成 (硬體會自動清除爲"0")
5	ADC_BIG	模/數轉換器數據比較旗標
		1: 當 Vin < ADC_CMP_V[9:0]所設定數據
		0: 當 Vin > ADC_WK_V[9:0]所設定數據
		Vin: 由 EN_AD[3:0]所選擇的通道
4	EN_ADC_WK	1: 開啓 ADC 喚醒模式
		0: 關閉 ADC 喚醒模式
3	SLT_FLT_CVT	1: 開啓 250ns 濾波器轉換資料
		0: 關閉濾波器
2	RDNOISE	1: 減低模/數轉換器轉換之雜訊 (暫停 8052 clock 16 us)
		0: 不減低模/數轉換器轉換之雜訊
1-0	ADC_CLK_SEL	模/數轉換器轉換頻率選擇
		00: 1 MHz
		01: 250 kHz
		10: 62.5 kHz
		11: 15.625 kHz

模/數轉換器轉換數據高位元組暫存器 AD_DATA[9:2] (外部記憶體位址: 0xD1)

復位値: (0x00h
--------	-------

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀	讀	讀	讀	讀	讀	讀	讀
名稱				AD_DA	TA[9:2]			

位元編號	位符號	說明
7-0	AD_DATA[9:2]	AD_DATA[9:2]轉換數據值設定,搭配 AD_DATA[1:0]組成 10 位元數據

模/數轉換器電壓比較喚醒數據高位元組暫存器 ADC_WK_V[9:2] (外部記憶體位址: 0xD2)

復位値	≒. ∩	vΩſ	٦h
4月11/11	∃. U	χοι	JII

	位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	狀態	讀	讀	讀	讀	讀	讀	讀	讀
Ī	名稱				ADC_W	K_V[9:2]			

位元編號	位符號	說明
7-0	ADC_WK_V[9:2]	ADC_WK_V[9:2] 喚醒電壓值設定,搭配 ADC_WK_V[1:0]組成 10 位元 數據

WT51F516

內建可編程 Flash 8 位元微控制器

模/數轉換器通道控制暫存器 ADC_ENCH (外部記憶體位址: 0xD3)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				EN_A	D[7:0]			

位元編號	位符號	說明
7-0	EN_AD[7:0]	模/數轉換器通道選擇
		0000: 選擇通道 CH0
		0001: 選擇通道 CH1
		0010: 選擇通道 CH2
		0011: 選擇通道 CH3
		0100: 選擇通道 CH4
		0101: 選擇通道 CH5
		0110: 選擇通道 CH6
		0111: 選擇通道 CH7

模/數轉換器轉換數據低位元組暫存器 AD_DATA[1:0] (外部記憶體位址: 0xD4)

復位值: 0x00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	讀	讀
名稱	保留						AD_DA	TA[1:0]

位元編號	位符號	說明
7-2	保留	-
1-0	AD_DATA[1:0]	AD_DATA[1:0]轉換數據值設定,搭配 AD_DATA[9:2]組成 10 位元數據

-: 未能使用。

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態		-	-	-	-	-	讀/寫	讀/寫
名稱	保留						ADC_W	K_V[1:0]

位元編號	位符號	說明
7-2	保留	-
1-0	ADC_WK_V[1:0]	ADC_WK_V[1:0] 喚醒電壓值設定,搭配 ADC_WK_V[9:2]組成 10 位元 數據

-: 未能使用。

模/數轉換器溫度感應控制暫存器 EN_ADC_TMPS (外部記憶體位址: 0xD6)

復位值: 0x00h

位元	第 7 位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	-	-	讀/寫
名稱	保留							EN_ADC_TMPS

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-1	保留	-
0	EN_ADC_TMPS	1: 開啓 ADC 對溫度傳感器傳輸的閘門
		0: 關閉 ADC 對溫度傳感器傳輸的閘門

-: 未能使用。

模/數轉換器設定控制暫存器 ADC_SEL (外部記憶體位址: 0xD7)

復位	盾·	0x04h	ì
1/ 2 /11/.	ш.	UAUTI	ı

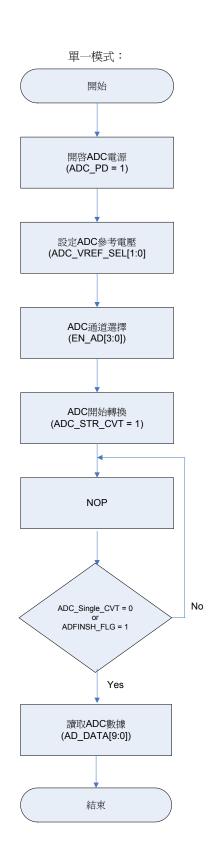
位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	-	讀/寫	讀/寫	讀/寫
名稱	保留					١	/REF_SEL[2:0)]

位元編號	位符號	說明
7-3	保留	-
2-0	VREF_SEL[2:0]	模/數轉換器參考電壓腳位選擇
		100: AVDD
		010: AREF pin
		001: 內部參考電壓 1.262V (必須關閉 PD_TMPS, D8H-bit7)
		其它: 不提供

-: 未能使用。

註:

- (a) 讀取"D1h"可以清除 ADC 喚醒中斷旗標
- (b) EN_AD[7:0] & EN_ADC_TMPS 同時間只能致能一個頻道
- (c) 當轉換溫度感應器電壓時,必須設定 ADC_CLK_SET = 10 或 11
- (d) 補償電壓值储存於 Flash memory XDATA 0xFFCH-bit[7:0], 取樣的校正值 VREF_D[7:0] (VREF 3.3V 10-Bit ADC)儲存於這個位址,低位元 8 bit 值儲存在 XDATA 0xFFCH-bit[7:0] 用來校正溫度感應器,高位元 2 bit 爲 3h。

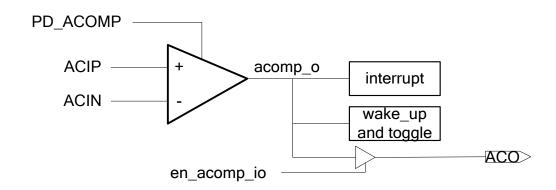

舉例: XDATA 0xFFCH = 2BH, the fully VREF_D code is 32BH,

Internal reference voltage =
$$\frac{1024}{VREF}$$
 = $\frac{1024}{32BH}$ = 1.263v

內建可編程 Flash 8 位元微控制器

致能模/數轉換器轉換數據流程圖

內建可編程 Flash 8 位元微控制器


6.17 比較器 (Comparator)

WT51F516 內建 1 組模擬電壓比較器,特點如下:

- ▶ 比較器可以被單獨致能或禁能
- 比較器的正緣和負緣都可以產生中斷

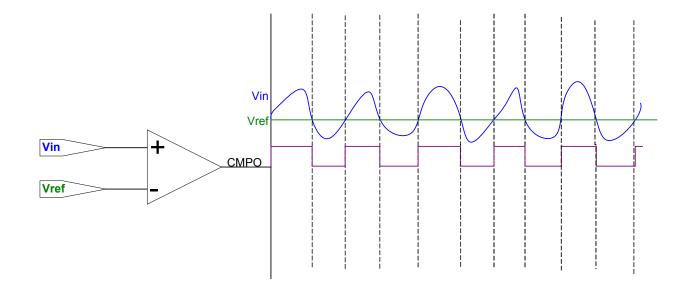
當致能比較器功能時,在外部記憶體位址: 0xD9 比較器控制暫存器 ACOMP_CTL 的 ACOMP_PD 位元為 0,對模擬 ACIP 及 ACIN 進行比較,有三種應用方法如下:

- 1. 中斷
- 2. 喚醒
- 3. 事件輸出 (ACO)

比較器控制暫存器 ACOMP_CTL (外部記憶體位址: 0xD9)

復位值: 0x80h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	-	讀/寫	-	-	-
名稱	ACOMP_PD	ACOMP_EDGE	CLR_ACOMP_EVENT	保留	ACOMP_EVENT		保留	


位元編號	位符號	說明
7	ACOMP_PD	1: 關閉比較器電源
		0: 開啓比較器電源
6	ACOMP_EDGE	1: 當 ACIP 電壓 > ACIN 電壓,則 ACOMP_EVENT = 1
		0: 當若 ACIP 電壓 < ACIN 電壓,則 ACOMP_EVENT = 1
5	CLR_ACOMP_EVENT	1: 清除比較器旗標
4	保留	-
3	ACOMP_EVENT	1: 比較器旗標
		0:當ACOMP_PD = 1,則ACOMP_EVENT = 0
2-0	保留	-

- -: 未能使用。
- (1) 在致能 ACOMP後,由於電壓還未穩定,所以必須設定 CLR_ACOMP_EVENT 清除旗標位元

內建可編程 Flash 8 位元微控制器

舉例來說,下圖顯示比較器輸入端經由增強型計時器進行 Gating Timer 捕捉低準位或高準位週期。

內建可編程 Flash 8 位元微控制器

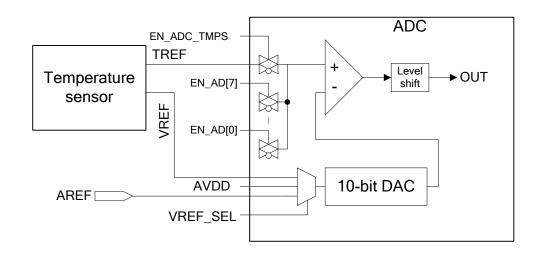
6.18 低壓偵測 (LVD)

WT51F516 內置低壓偵測電路,可以檢測電源電壓下降到軟件設定範圍值,而產生中斷。

- 低壓偵測功能的致能和禁能操作,可以由軟體控制
- ▶ 低壓偵測位準有四段電壓可供選擇: 2.50V、3.00V、3.50V或 4V

低壓偵測控制暫存器 LVD_CTL (外部記憶體位址: 0x0B)

復位値: 80H


位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	-	-	-	-	讀/寫	讀/寫	-
名稱	LVD_PD		保	留		LVD_SE	L[1:0]	保留

位元編號	位符號	說明
7	LVD_PD	1: 關閉低壓偵測電源
		0: 開啓低壓偵測電源
6-3	保留	-
2-1	LVD_SEL[1:0]	低壓偵測範圍:
		00: < 2.5V
		01: < 3V
		10: < 3.5V
		11: < 4V
0	保留	-

^{-:} 未能使用。

6.19 溫度感應器 (Temperature Sensor)

溫度感應器可用於大型工業或小型家電的溫度感測,溫度感應元件可讀取 10 bit ADC 的值,利用公式轉換出目前 MCU 的周邊溫度。

溫度感應器設定控制暫存器 TS_SEL (外部記憶體位址: 0xD8)

復位值: 0x80h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	-	-	-	-	-	讀/寫	讀/寫
名稱	PD_TMPS		保留					GAIN[1:0]

位元編號	位符號	說明
7	PD_TMPS	1: 禁能溫度感應器 (預設値)
		0: 致能溫度感應器
6-2	保留	-
1-0	TMPS_GAIN[1:0]	放大控制選擇
		00: 0.9486 ~ 0.5600V (388.6 mV)
		01: 1.5777 ~ 0.9338V (643.9 mV)
		10: 2.2070 ~ 1.3040V (903.0 mV)
		11: 2.8377 ~ 1.6783V (1159. 4mV)

-: 未能使用。

轉換方式請參考下面公式:

(a) 溫度感應器補償電壓値储存於 Flash memory XDATA 0xFFDH-bit[7:0], 出廠時會將室溫下取樣的溫度感應器校正值 TS_TREF_D[7:0] (VREF 3.3V 10-Bit ADC)儲存於這個位址, 低位元 8 bit 值儲存在 XDATA 0xFFDH-bit[7:0] 用來校正溫度感應器, 高位元 2bit 為 2h, 在室溫下的理想值是 2E7H。

舉例: XDATA 0xFFDH = DFH, the fully TREF_D code 爲 2DFH。

Calibrated
$$_Temp = \frac{(2E7H - 2DFH)*3.223mV}{-0.0066} = -3.9067 °C$$

內建可編程 Flash 8 位元微控制器

TMPS_GAIN	Temp.(℃) - Equation	Note
00	TS_TREF_Voltage = 0.85 + Calibrated _ Temp = 0.00213	ADC Vref > 1.2V
01	TS_TREF_Voltage = 1.42 + Calibrated _Temp = 0.00375	ADC Vref > 1.8V
10	TS_TREF_Voltage = 1.98 + Calibrated _ Temp = 0.0052	ADC Vref > 2.4V
11	TS _TREF _Voltage - 2.55 + Calibrated _Temp - 0.0066	ADC Vref > 3.0V

TS_TREF voltage 爲 ADC 已經完成轉換出的結果值。

TS_TREF Voltage=
$$\frac{AD_DATA}{1024}*ADC_VREF = \frac{2AAH}{1024}*3.3v = 2.198V$$

$$Temperature = \frac{TS_TREF_Voltage-2.55}{-0.0066} + Calibrated_Temp = \frac{2.198-2.55}{-0.0066} + (-3.9067) = 49.43 \ ^{\circ}\text{C}$$

*在室溫下取樣的校正值誤差約 25℃ ±3℃

內建可編程 Flash 8 位元微控制器

6.20 仿真式 E²PROM

利用內部 Flash PROM 的空間來模擬 E2PROM,儲存位址: 0x3000~0x3FF0。

E²PROM 致能暫存器 1 EER_EN1[3:0] (外部記憶體位址: 0xE0)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	寫	寫	寫	寫
名稱		保	留			EER_E	N1[3:0]	

位元編號	位符號	說明
7-4	保留	-
3-0	EER_EN1[3:0]	當 EER_EN1[3:0] = '1010', 同時 EER_EN2[3:0] = '0101', 則致能 E²PROM 之功能

^{-:} 未能使用。

E²PROM 致能暫存器 2 EER_EN2[3:0] (外部記憶體位址: 0xE1)

復位值: 0x00h

位元	第7位	第6位	第5位	第4位	第3位	第2位	第 1 位	第0位
狀態	-	-	-	-	寫	寫	寫	寫
名稱		保	:留			EER_E	N2[3:0]	

位元編號	位符號	說明
7-4	保留	-
3-0	EER_EN2[3:0]	當 EER_EN2[3:0] = '0101',同時 EER_EN1[3:0] = '1010',則開啓 E²PROM 之功能

^{-:} 未能使用。

E²PROM 位址低位元組暫存器 EER_ADDR[7:0] (外部記憶體位址: 0xE2)

復位值: 0xFFh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫	讀/寫
名稱				EER_AD	DDR[7:0]			

位元編號	位符號	說明
7-0	EER_ADDR[7:0]	EER_ADDR[7:0]位址設定,搭配 EER_ADDR[11:8]組成 12 位元位址

E²PROM 位址高位元組暫存器 EER_ADDR[11:8] (外部記憶體位址: 0xE3)

復位值: 0x0Fh

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	-	-	讀/寫	讀/寫	讀/寫	讀/寫
名稱		保留				EER_AD	DR[11:8]	

WT51F516

內建可編程 Flash 8 位元微控制器

位元編號	位符號	說明
7-4	-	-
3-0	EER_ADDR[11:8]	EEP_ADDR[11:8]位址設定,搭配 EER_ADDR[7:0]組成 12 位元位址

-: 未能使用。

E²PROM 控制暫存器 EER_TCTL[3:0] (外部記憶體位址: 0xE4)

復位值: 0x	:08h
---------	------

位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	-	-	寫	寫	寫	寫	寫	寫
名稱	保留	保留	EER_ERASE	EER_PROG		EER_T(CTL[3:0]	•

位元編號	位符號	說明
7	保留	-
6	保留	-
5	EER_ERASE	1: E ² PROM 進行 ERASE (256 Bytes)/頁
		0: 不進行 ERASE
4	EER_PROG	1: E ² PROM 進行 PROGRAM (1 Byte)
		0: 不進行 PROGRAM
3-0	EER_TCTL[3:0]	E ² PROM ERASE/PROGRAM 時間設定 (請參考"註")

^{-:} 未能使用。

E²PROM 數據暫存器 EER_DAT0[7:0] (外部記憶體位址: 0xE8)

佰	位值:	n	v۸	۸ŀ
123	11/118.	U	χU	ui

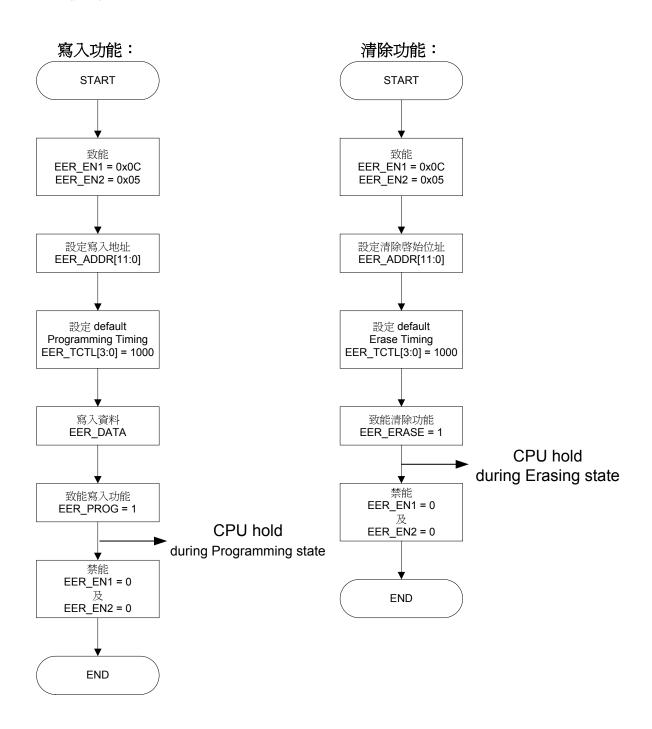
位元	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
狀態	寫	寫	寫	寫	寫	寫	寫	寫
名稱		EER_DAT0[7:0]						

位元編號	位符號	說明
7-0	EER_DATA[7:0]	E²PROM 數據暫存器

註:

- 1. 當 WT51F516 在使用 E2PROM 功能時(寫入數據、清除),都會使 CPU 暫時停止工作。
- 2. WT51F516 工作在 12 MHz 下,寫入及清除 E²PROM 數據所需時間: 預設值: EER_TCTL[3:0] = 1000,寫入數據所需時間爲 28 μ sec ~ 32 μ sec

及清除數據所需時間爲 28 msec ~ 32 msec


內建可編程 Flash 8 位元微控制器

E²PROM 清除範圍及位址設定 (清除後數據都是 0xFF)

Flash 位址	EER_ADDR[11:8]	EER_ADDR[7:0]	清除範圍	備註
0x3000	0000	0000 0000	0x3000 ~ 0x30FF	
0x3100	0001	0000 0000	0x3100 ~ 0x31FF	
0x3200	0010	0000 0000	0x3200 ~ 0x32FF	
0x3300	0011	0000 0000	0x3300 ~ 0x33FF	
0x3400	0100	0000 0000	0x3400 ~ 0x34FF	
0x3500	0101	0000 0000	0x3500 ~ 0x35FF	
0x3600	0110	0000 0000	0x3600 ~ 0x36FF	
0x3700	0111	0000 0000	0x3700 ~ 0x37FF	
0x3800	1000	0000 0000	0x3800 ~ 0x38FF	
0x3900	1001	0000 0000	0x3900 ~ 0x39FF	
0x3A00	1010	0000 0000	0x3A00 ~ 0x3AFF	
0x3B00	1011	0000 0000	0x3B00 ~ 0x3BFF	
0x3C00	1100	0000 0000	0x3C00 ~ 0x3CFF	
0x3D00	1101	0000 0000	0x3D00 ~ 0x3DFF	
0x3E00	1110	0000 0000	0x3E00 ~ 0x3EFF	

E²PROM 致能流程圖:

7. 電氣特性

7.1 極限參數

參數	最小値	最大値	單位
直流供電電壓	-0.3	5.5	V
輸入/輸出電壓	VSS -0.3	VDD +0.3	V
環境溫度	-40	85	$^{\circ}\!\mathbb{C}$
存儲溫度	-60	125	$^{\circ}\!\mathbb{C}$

7.2 推薦操作參數

參數	符號		單位			
参数	竹號	最小値	典型値	最大値	事业 	
電源電壓	V_{DD}	2.0		5.5	V	
主操作頻率	F _{main}		12		MHz	
操作溫度	T _{OPR}	-40		85	$^{\circ}\!\mathbb{C}$	

7.3 DC 電氣特性 (V_{DD} = 5V, -40℃ to +85℃)

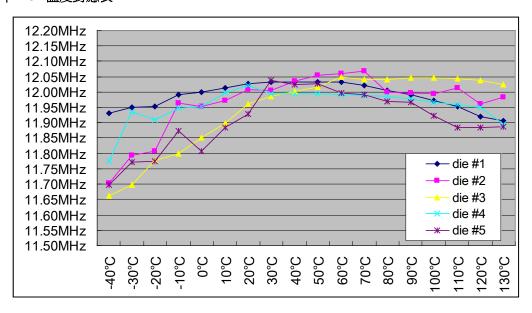
益 佛/	⁄ን⁄ተ ዛ ሬ ት	引腳/條件		規格		里丛
參數	符號		最小値	典型値	最大値	單位
施密特觸發低到高(note 1)	V_{T+}		1.9		5.5	V
施密特觸發低到高(note 2)	V_{T+}		1.9		3.6	
施密特觸發高到低	V_{T-}				1.2	V
輸出高電壓	V _{OH4mA} (note 3)	I _{OH} = 4mA	2.4			V
	V _{OH8mA} (note 4)	.) I _{OH} = 8mA	2.4			V
輸出低電壓	V _{OL4mA} (note 3)	I _{OL} = 4mA			0.4	V
	V _{OL8mA} (note 4)	I _{OL} = 8mA			0.4	
輸入漏電流	I _{OZ}	V _O = 0V 或 3.3V		±0.01	±1	μ A
上拉電阻	R _{PH}			50		ΚΩ
正常高速模式 At 12 MHz	I _{VDD12M}	No load on output		4		mA
正常高速模式 At 6 MHz	I _{VDD6M}	No load on output		2.5		mA
正常高速模式 At 3 MHz	I _{VDD3M}	No load on output		1.5		mA
正常高速模式 At 1 MHz	I _{VDD1M}	No load on output		1		mA
閒置模式(Idle mode)	I _{VDDS1}	No load on output		400		μ A
睡眠模式(Sleep mode)	I _{VDDS2}	No load on output		100		μ A
省電模式 (Power-saving	I _{VDDS3}	No load on output		5		μ A

內建可編程 Flash 8 位元微控制器

÷#4	አ/ተ ቤተቅ	⊒ 1 1800 1 tb.				
参數	符號	引腳/條件	最小値	典型值	最大値	單位
mode)						
RTC 模式	I _{VDDRTC}	No load on output		1		μ A

Note 1: GPIOA0~A6, GPIOC0~C7 和 NRST pin,輸入最大電壓為 +5.5v (= 5V+0.5V), GPIOC1輸入最大電壓 為+3.6V (在 UG320 包裝)。

Note 2: GPIOA7, GPIOB0~B7 和 GPIOC1, XTALI 輸入最大容許電壓為 +3.6V (= 3.3V+0.3V)

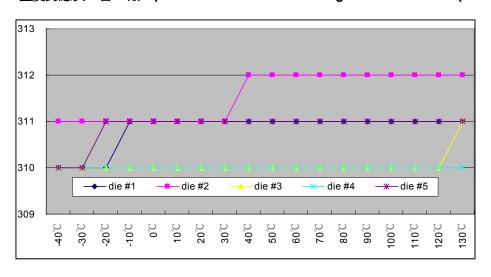

Note 3: 除了 GPIOA0, GPIOA3, GPIOA4 和 GPIOC5 外, 其它的 sink/source 電流爲 10mA

Note 4: 這些腳位 GPIOA0, GPIOA3, GPIOA4, GPIOC5 最大 sink/source 電流爲 20mA

7.4 內部 12 MHz RC 盪振器溫度誤差表

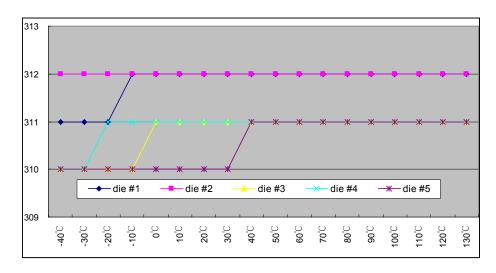
參數	符號	⊒ I P\\\ I \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		規格		單位
多数	1寸號 	引腳/條件	最小値	典型値	最大值	早 仏
RC 頻率	F _{RC}	$V_{DD} = 5V$		12		MHz
頻率誤差範圍 @VDD5 = 5V (固定)	ΔF _{RCH1} /F _{RCH}	無外部石英晶體振 盪器作校正 25°C		±1		%
		0°C ~ 70°C		±2		%
		-40°C ~ 85°C		±3		%
頻率誤差範圍 @VDD5 = 5V (固定)	ΔF _{RCH2} /F _{RCH}	有外部石英晶體振 盪器作校正 -40°C~-85°C			±1	%

RC 振盪頻率 vs. 溫度對應表.

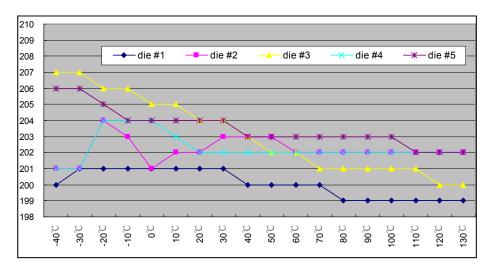

7.5 低速內部 RC 振盪器

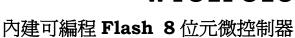
參數	 符號 引腳/條件 			單位			
多数	1寸號	51mm/宋代 	最小値	典型値	最大値	+ []7.	
RC 頻率 (@VDD5 = 5V)	F _{RCL}		110	128	145	kHz	
	ΔF _{RCL} /F _{RCL}	無外部石英晶體振 盪器作校正 -40°C~-85°C			±5	5%	

7.6 A/D 轉換特性


益事件	<i>የተ</i> ቤቴ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		規格		單位	
參數	符號	引腳/條件	最小値	典型値	最大値	単 仏	
分辨率					10	bit	
絕對精度	E _{IL}	AREF = 3.3V			±2	LSB	
相對精度	E _{DL}	AREF = 3.3V			±1	LSB	
補償精度	E _{OFS}	AREF = 3.3V			±1	LSB	
放大精度	E _{GAN}	AREF = 3.3V			±3	LSB	
類比輸入電壓範圍	V	VDD5 = 5V	VSS		CAP33 (AREF)	V	
	V_{AN}	VDD33 = 3.3V	VSS		VDD33 (AREF)	V	
類比參考電壓	V_{REF}		2		CAP33 (VDD33)	V	
轉換時間	T _{CT}		16			μS	
ADC 功耗	IADC1	VDD33=3.3V		600		μ A	

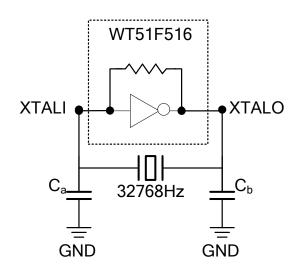
(a) AD 轉換值 vs. 溫度對應表,當 V_{AN} input = 1V, "ADC VREF voltage = CAP33/VDD33 power = 3.3V"





(b) AD 轉換值 vs. 溫度對應表,當 V_{AN} input = 1V at "ADC VREF voltage = AREF pin =3.3V"

(c) AD 轉換值 vs. 溫度對應表,當 V_{AN} input = 1V, "VREF voltage = internal bandgap voltage"

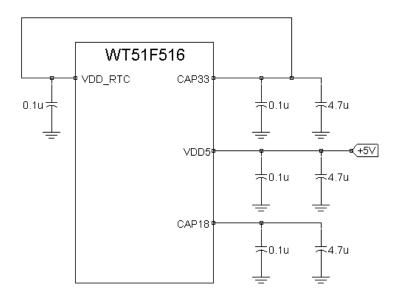


7.7 石英晶體振盪器

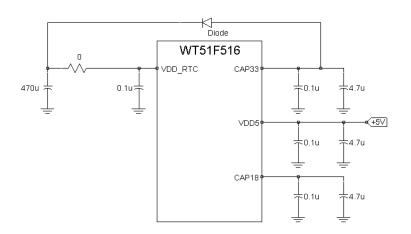
益事	かなり最	符號 引腳/條件 一		規格			
參數	1寸號	引腳/條件	最小値	典型値	最大値	單位	
頻率範圍	Fo			32.768		KHz	
外部電容(1)	C _a /C _b		10		68	pF	

註:

1. 振盪器負載電容 $\mathbf{C_L} = \frac{Ca*Cb}{(Ca+Cb)} + Cs$ ($\mathbf{C_S}$) ($\mathbf{C_S$

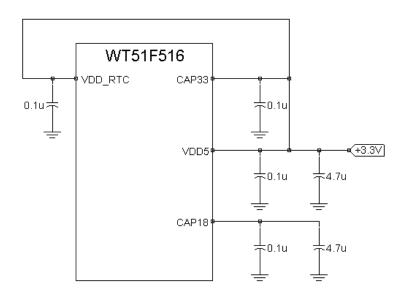


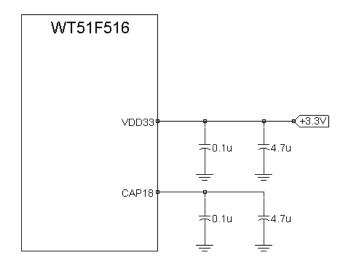
8. 應用電路


8.1 +5.0V power Supply

For 51F516-RG480WT/51F516-UG320WT

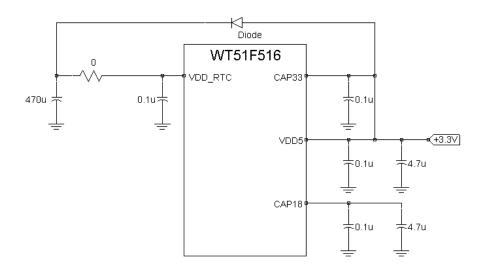
For 51F516-RG480WT/51F516-UG480WT


RTC 外接靜電容或電池參考線路

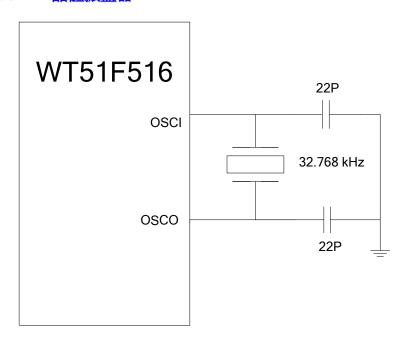


8.2 +3.3V power Supply

For 51F516-RG480WT/51F516-UG320WT



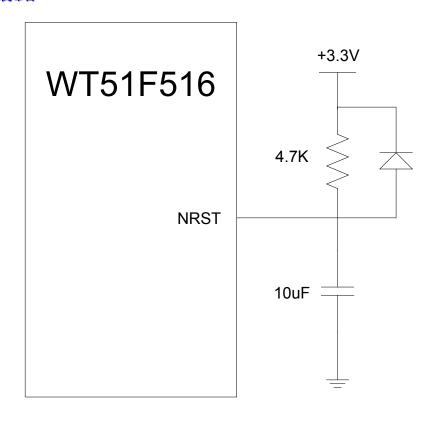
For 51F516-OG200WT/51F516-SG161WT



For 51F516-RG480WT/51F516-UG320/32AWT

8.3 振盪器線路

8.3.1 外掛 32.768 kHz 晶體振盪器


註: WT51F516 已提供內部 RC 振盪,可以不需要外掛晶體振盪器,但有需求更精準的應用可以外掛晶體振盪器。

^{*} Crystal load capacitance $C_L = \frac{Ca*Cb}{(Ca+Cb)} + Cs$ (C_S is stray capacitances and Crystal load capacitance value to look for in the data sheet of the crystal is C_L .)

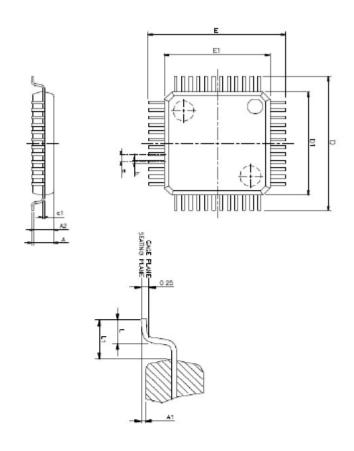
內建可編程 Flash 8 位元微控制器

8.4 RESET 線路

內建可編程 Flash 8 位元微控制器

9. 產品命名規則

WT	消費性市場	LCD 功能	種子碼 (家族)	Flash Size	e (K Bytes)	註解
WT	5	1F	1	0	4	5: 具 MCU/DSP,使用在泛用型 或 消費性市場的相關產品
						1X: 8-bit MCU 1F: Flash type 不帶 LCD 功能的 8-bit
			5	1	6	MCU
WT	5	6F	1	0	8	5: 具 MCU/DSP,使用在泛用型 或
			2	1		消費性市場的相關產品 6X: LCD 背光模組控制器 6F: Flash type 帶 LCD 功能的 8-bit MCU


10. 訂購信息

包裝型	包裝外觀尺寸	產品型號
LQFP48	7mm x 7mm	WT51F516-RG480WT
QFN32	5mm x 5mm	WT51F516-UG320WT
QFN32	5mm x 5mm	WT51F516-UG32AWT
SSOP20	150 mil	WT51F516-OG200WT
SOP16	150 mil	WT51F516-SG161WT
DIE	-	WT51F516-HXXXWT

11.封裝尺寸

11.1 48-Pin LQFP

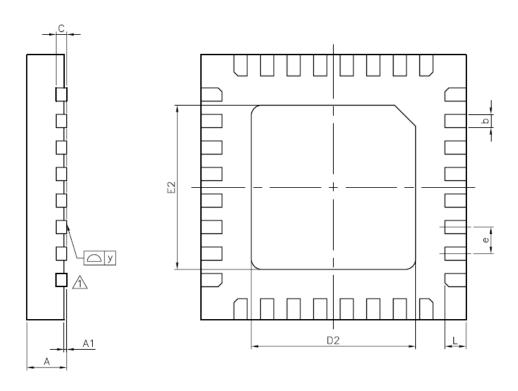
NOTES:

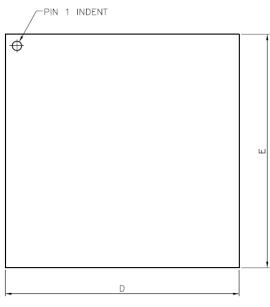
1.JEDEC OUTLINE: MS-026 BBC

2.DIMENSIONS D1 AND E1 DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION IS


0.25mm PER SIDE. D1 AND E1 ARE MAXNUM
PLASTIC BODY SIZE DIMENSIONS INCLUDING
MOLD MISMATCH.

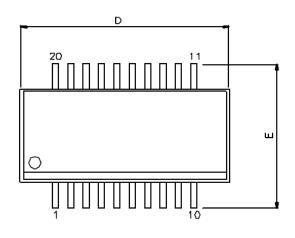
3.DIMENSION B DOES NOT INCLUDE DANBAR
PROTRUSION.ALLOWABLE DANBAR PROTRUSION
SHALL NOT CAUSE THE LEAD WIDTH TO
EXCEED THE MAXMUM B DIMENSION BY MORE

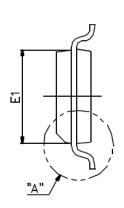

THAN D.OBmm.

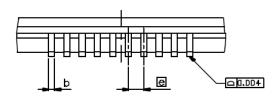

굒

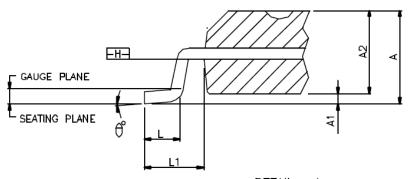
A 1 A1 0.05 0 A2 1.35 1 c1 0.09 0.00 BSC	0.09		D1 7.00 BSC	9.00	1 7.00 9.00 1 7.00	1 7.00 9.00 1 7.00	1 7.00 B
	0.16		9.00 BSC		7.00 BSC	7.00 BSC 0.5 BSC	7.00 BSC 0.5 BSC 0.27

11.2 QFN32

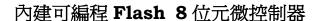

	DIMENSIO	NS IN MIL	LIMFTERS
SYMBOLS	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
С		0.20 REF.	
D	4.90	5.00	5.10
D2	3.05	3.10	3.15
Е	4.90	5.00	5.10
E2	3.05	3.10	3.15
е		0.50	
L	0.35	0.40	0.45
у	0.00		0.075


NOTE:

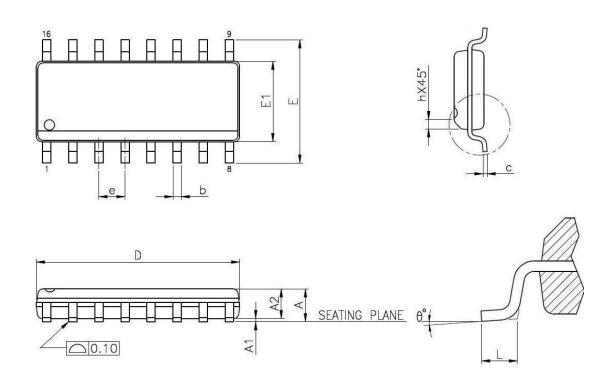

1.THE TERMINAL #1 IDENTIFIER IS A LASER MARKED FEATURE



11.3 SSOP20


DETAIL : A

SYMBOLS	MIN.	NOM.	MAX.
Α	0.053	0.064	0.069
A1	0.004	0.006	0.010
A2	_	_	0.059
b	800.0	_	0.012
С	0.007	-	0.010
D	0.337	0.341	0.344
E	0.228	0.236	0.244
E1	0.150	0.154	0.157
е	(0.025 BASIC	
L	0.016	0.025	0.050
L1	().041 BASIC	,
θ°	0°	_	8°


UNIT: INCH

NOTES:

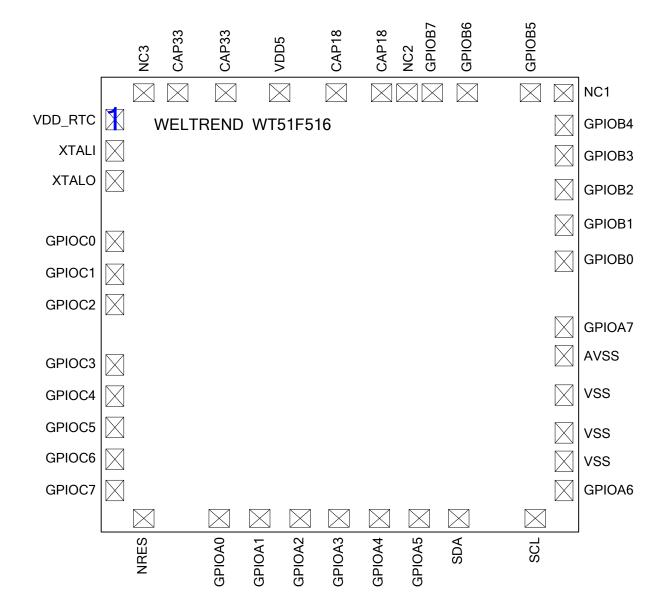
- 1 JEDEC OUTLINE : MO-137 AD
- 2 DIMENSION D DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0:006" PER SIDE. DIMENSION E1 DOES NOT INCLUDE INTERLEAD MOLD PROTRUSIONS. INTERLEAD MOLD PROTRUSIONS SHALL NOT EXCEED 0.010" PER SIDE.
- 3.DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.004" TOTAL IN EXCESS OF
 & DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR INTRUSION
 SHALL NOT REDUCE DIMENSION & BY MORE THAN 0.002" AT LEAST

11.4 SOP16

MIN.			
Willy.	MAX.		
-	1.75		
0.10	0.25		
1.25	-		
0.31	0.51		
0.10	0.25		
9.90	BSC		
6.00	BSC		
3.90 BSC			
1.27 BSC			
0.40	1.27		
0.25	0.50		
0	8		
	- 0.10 1.25 0.31 0.10 9.90 6.00 3.90 1.27 0.40 0.25		

UNIT: mm

NOTES:


- JEDEC OUTLINE: MS-012 AC REV.F (STANDARD)
- 2. DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15mm. PER SIDE

DIMENSIONS "E1" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25mm PER SIDE

內建可編程 Flash 8 位元微控制器

11.5 Pad Diagram

內建可編程 Flash 8 位元微控制器

座標表

No	Name	Х	Υ	*	No	Name	Х	Υ	*
1	VDD_RTC	46.18	1606.82	Α	22	VSS	1803.82	268.53	Α
2	XTALI	46.18	1487.12	Α	23	VSS	1803.82	376.88	Α
3	XTALO	46.18	1367.42	Α	24	VSS	1803.82	528.05	Α
4	GPIOC0	46.18	1129.69	Α	25	AVSS	1803.82	681.95	Α
5	GPIOC1	46.18	1006.99	Α	26	GPIOA7	1803.82	795.61	Α
6	GPIOC2	46.18	884.29	Α	27	GPIOB0	1803.82	1055.415	Α
7	GPIOC3	46.18	645.71	Α	28	GPIOB1	1803.82	1192.735	Α
8	GPIOC4	46.18	523.01	Α	29	GPIOB2	1803.82	1330.055	Α
9	GPIOC5	46.18	400.31	Α	30	GPIOB3	1803.82	1467.375	Α
10	GPIOC6	46.18	277.61	Α	31	GPIOB4	1803.82	1587.185	Α
11	GPIOC7	46.18	154.91	Α	32	NC1	1805.32	1713.82	С
12	NRES	154.45	46.18	В	33	GPIOB5	1677.62	1713.82	В
13	GPIOA0	458.43	46.18	В	34	GPIOB6	1425.81	1713.82	В
14	GPIOA1	613.83	46.18	В	35	GPIOB7	1286.53	1713.82	В
15	GPIOA2	769.23	46.18	В	36	NC2	1188.79	1713.82	В
16	GPIOA3	924.63	46.18	В	37	CAP18	1091.79	1713.82	В
17	GPIOA4	1080.03	46.18	В	38	CAP18	913.595	1713.82	В
18	GPIOA5	1235.43	46.18	В	39	VDD5	696.225	1713.82	В
19	SDA	1390.83	46.18	В	40	CAP33	478.87	1713.82	В
20	SCL	1695.55	46.18	В	41	CAP33	291.68	1713.82	В
21	GPIOA6	1803.82	154.45	Α	42	NC3	153.18	1713.82	В

註 1: 原點位置在 Die 的左下方。

註 2: PAD 尺寸.

A: 66um x 73um

B: 73um x 66um

C: 63um x 66um

註 3: 爲了使電壓穩定,請在 CAP18/CAP33/VDD5/VDD_RTC 和 VSS 之間加上旁路電容 0.1uF 和 4.7uF。

註 4: NC1,NC2,NC3 腳位一般應用不接線。

註 5: 全部的 VSS 腳位需要連接在一起。(No: 22, 23, 24, 25)

註 6: 全部的 CAP18 腳位需要連接在一起。(No: 37, 38)

註 7: 部的 CAP33 腳位需要連接在一起。(No: 40, 41)

註 8: VDD_RTC 腳位需要與 CAP33 連接,除非 VDD_RTC 獨立供電。

內建可編程 Flash 8 位元微控制器

12. 開發工具

WT51F516 可以與 Keil C51 搭配,調試工具與開發演示板、應用軟件,都可以在電腦系統 Win98/2000/XP/Win7 完成在線仿真(ICE)與在線燒錄(ISP)。

示意圖如下:

註: 詳細請參考 ICE/ISP 使用說明手冊及 WLINK 應用手冊。

13. 版本更改記錄

版本	記錄	日期
1.1	初始版本	2012年4月
1.12	增加 UG32A 包裝	2015年3月